These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24174184)

  • 41. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation.
    McLaughlin S; Harary H
    Biochemistry; 1976 May; 15(9):1941-8. PubMed ID: 946770
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels.
    Levitt DG
    Biophys J; 1985 Jul; 48(1):19-31. PubMed ID: 2410048
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alamethicin adsorption to a planar lipid bilayer.
    Vodyanoy I; Hall JE; Vodyanoy V
    Biophys J; 1988 May; 53(5):649-58. PubMed ID: 3390515
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Colicin N forms voltage- and pH-dependent channels in planar lipid bilayer membranes.
    Wilmsen HU; Pugsley AP; Pattus F
    Eur Biophys J; 1990; 18(3):149-58. PubMed ID: 1694123
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimates of the intramembrane field through the harmonics of capacitive current in inhomogeneous bilayer lipid membranes.
    Passechnik VI
    Bioelectrochemistry; 2001 Aug; 54(1):63-73. PubMed ID: 11506976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Theory of hydrophobic ion adsorption in bilayer lipid membranes taking into account their lateral interaction and charge discreteness].
    Kozlov MM; Chernyĭ VV; Sokolov VS; Ermakov IuA; Markin VS
    Biofizika; 1983; 28(1):61-6. PubMed ID: 6830904
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-channel analysis of the conductance fluctuations induced in lipid bilayer membranes by complement proteins C5b-9.
    Benz R; Schmid A; Wiedmer T; Sims PJ
    J Membr Biol; 1986; 94(1):37-45. PubMed ID: 2433454
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate.
    Andersen OS; Fuchs M
    Biophys J; 1975 Aug; 15(8):795-830. PubMed ID: 1148364
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Constant fields and constant gradients in open ionic channels.
    Chen DP; Barcilon V; Eisenberg RS
    Biophys J; 1992 May; 61(5):1372-93. PubMed ID: 1376159
    [TBL] [Abstract][Full Text] [Related]  

  • 50. INFLUENCE OF THE CONCENTRATION OF ELECTROLYTES ON THE ELECTRIFICATION AND THE RATE OF DIFFUSION OF WATER THROUGH COLLODION MEMBRANES.
    Loeb J
    J Gen Physiol; 1919 Nov; 2(2):173-200. PubMed ID: 19871800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli.
    Benz R; Janko K; Boos W; Läuger P
    Biochim Biophys Acta; 1978 Aug; 511(3):305-19. PubMed ID: 356882
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The electrical conductance of semipermeable membranes. II. Unipolar flow, symmetric electrolytes.
    Bruner LJ
    Biophys J; 1965 Nov; 5(6):887-908. PubMed ID: 5884015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon.
    Keynes RD; Rojas E
    J Physiol; 1974 Jun; 239(2):393-434. PubMed ID: 4414038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical conductivity, transfer of hydrogen ions in lipid bilayer membranes and uncoupling effect induced by pentachlorobenzenethiol (pentachlorothiophenol).
    Smejtek P; Jayaweera AR; Hsu K
    J Membr Biol; 1983; 76(3):227-34. PubMed ID: 6100863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Displacement currents associated with the insertion of Alzheimer disease amyloid beta-peptide into planar bilayer membranes.
    Vargas J; Alarcón JM; Rojas E
    Biophys J; 2000 Aug; 79(2):934-44. PubMed ID: 10920024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CATAPHORETIC CHARGES OF COLLODION PARTICLES AND ANOMALOUS OSMOSIS THROUGH COLLODION MEMBRANES FREE FROM PROTEIN.
    Loeb J
    J Gen Physiol; 1922 Sep; 5(1):89-107. PubMed ID: 19871981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TolC of Escherichia coli functions as an outer membrane channel.
    Benz R; Maier E; Gentschev I
    Zentralbl Bakteriol; 1993 Apr; 278(2-3):187-96. PubMed ID: 7688606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanism of ion transport through lipid bilayer-membranes mediated by peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro).
    Benz R; Gisin BF; Ting-Beall HP; Tosteson DC; Läuger P
    Biochim Biophys Acta; 1976 Dec; 455(3):665-84. PubMed ID: 999934
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theory of space-charge polarization for determining ionic constants of electrolytic solutions.
    Sawada A
    J Chem Phys; 2007 Jun; 126(22):224515. PubMed ID: 17581071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. How do protons cross the membrane-solution interface? Kinetic studies on bilayer membranes exposed to the protonophore S-13 (5-chloro-3-tert-butyl-2'-chloro-4' nitrosalicylanilide).
    Kasianowicz J; Benz R; McLaughlin S
    J Membr Biol; 1987; 95(1):73-89. PubMed ID: 3031309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.