These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24174548)

  • 41. Concerted effects of amino acid substitutions in conserved charged residues and other residues in the cytoplasmic domain of PomA, a stator component of Na+-driven flagella.
    Fukuoka H; Yakushi T; Homma M
    J Bacteriol; 2004 Oct; 186(20):6749-58. PubMed ID: 15466026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio.
    Zhu S; Kumar A; Kojima S; Homma M
    Mol Microbiol; 2015 Oct; 98(1):101-10. PubMed ID: 26103585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exchange of rotor components in functioning bacterial flagellar motor.
    Fukuoka H; Inoue Y; Terasawa S; Takahashi H; Ishijima A
    Biochem Biophys Res Commun; 2010 Mar; 394(1):130-5. PubMed ID: 20184859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A coevolution-guided model for the rotor of the bacterial flagellar motor.
    Khan S; Guo TW; Misra S
    Sci Rep; 2018 Aug; 8(1):11754. PubMed ID: 30082903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Serine suppresses the motor function of a periplasmic PomB mutation in the Vibrio flagella stator.
    Nishikino T; Zhu S; Takekawa N; Kojima S; Onoue Y; Homma M
    Genes Cells; 2016 May; 21(5):505-16. PubMed ID: 27004994
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN.
    Lloyd SA; Tang H; Wang X; Billings S; Blair DF
    J Bacteriol; 1996 Jan; 178(1):223-31. PubMed ID: 8550421
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ structure of the complete Treponema primitia flagellar motor.
    Murphy GE; Leadbetter JR; Jensen GJ
    Nature; 2006 Aug; 442(7106):1062-4. PubMed ID: 16885937
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutational analysis of charged residues in the cytoplasmic loops of MotA and MotP in the Bacillus subtilis flagellar motor.
    Takahashi Y; Ito M
    J Biochem; 2014 Oct; 156(4):211-20. PubMed ID: 24771657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motility protein complexes in the bacterial flagellar motor.
    Tang H; Braun TF; Blair DF
    J Mol Biol; 1996 Aug; 261(2):209-21. PubMed ID: 8757288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor.
    Garza AG; Biran R; Wohlschlegel JA; Manson MD
    J Mol Biol; 1996 May; 258(2):270-85. PubMed ID: 8627625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor.
    Fukuoka H; Yakushi T; Kusumoto A; Homma M
    J Mol Biol; 2005 Aug; 351(4):707-17. PubMed ID: 16038931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.
    Morimoto YV; Nakamura S; Hiraoka KD; Namba K; Minamino T
    J Bacteriol; 2013 Feb; 195(3):474-81. PubMed ID: 23161029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical characterization of the flagellar stator-associated inner membrane protein FliL from Vibrio alginolyticus.
    Kumar A; Isumi M; Sakuma M; Zhu S; Nishino Y; Onoue Y; Kojima S; Miyanoiri Y; Imada K; Homma M
    J Biochem; 2017 Apr; 161(4):331-337. PubMed ID: 28013221
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The hydrophobic core of FliG domain II is the stabilizer in the Salmonella flagellar motor.
    Hashimoto M; Momma K; Inaba S; Nakano S; Aizawa SI
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2556-2567. PubMed ID: 22878394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium.
    Takekawa N; Terahara N; Kato T; Gohara M; Mayanagi K; Hijikata A; Onoue Y; Kojima S; Shirai T; Namba K; Homma M
    Sci Rep; 2016 Aug; 6():31526. PubMed ID: 27531865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella.
    Saijo-Hamano Y; Minamino T; Macnab RM; Namba K
    J Mol Biol; 2004 Oct; 343(2):457-66. PubMed ID: 15451673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion.
    Liu J; Lin T; Botkin DJ; McCrum E; Winkler H; Norris SJ
    J Bacteriol; 2009 Aug; 191(16):5026-36. PubMed ID: 19429612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bridging the N-terminal and middle domains in FliG of the flagellar rotor.
    Tupiņa D; Krah A; Marzinek JK; Zuzic L; Moverley AA; Constantinidou C; Bond PJ
    Curr Res Struct Biol; 2022; 4():59-67. PubMed ID: 35345452
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Helix rotation model of the flagellar rotary motor.
    Schmitt R
    Biophys J; 2003 Aug; 85(2):843-52. PubMed ID: 12885632
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure of the FliF-FliG complex from
    Xue C; Lam KH; Zhang H; Sun K; Lee SH; Chen X; Au SWN
    J Biol Chem; 2018 Feb; 293(6):2066-2078. PubMed ID: 29229777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.