These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24174669)

  • 1. Fading signatures of critical brain dynamics during sustained wakefulness in humans.
    Meisel C; Olbrich E; Shriki O; Achermann P
    J Neurosci; 2013 Oct; 33(44):17363-72. PubMed ID: 24174669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Interplay between Long- and Short-Range Temporal Correlations Shapes Cortex Dynamics across Vigilance States.
    Meisel C; Klaus A; Vyazovskiy VV; Plenz D
    J Neurosci; 2017 Oct; 37(42):10114-10124. PubMed ID: 28947577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal avalanches differ from wakefulness to deep sleep--evidence from intracranial depth recordings in humans.
    Priesemann V; Valderrama M; Wibral M; Le Van Quyen M
    PLoS Comput Biol; 2013; 9(3):e1002985. PubMed ID: 23555220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase Synchronization Analysis of Natural Wake and Sleep States in Healthy Individuals Using a Novel Ensemble Phase Synchronization Measure.
    Nayak CS; Bhowmik A; Prasad PD; Pati S; Choudhury KK; Majumdar KK
    J Clin Neurophysiol; 2017 Jan; 34(1):77-83. PubMed ID: 27490322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decline of long-range temporal correlations in the human brain during sustained wakefulness.
    Meisel C; Bailey K; Achermann P; Plenz D
    Sci Rep; 2017 Sep; 7(1):11825. PubMed ID: 28928479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks.
    Vanvinckenroye A; Vandewalle G; Phillips C; Chellappa SL
    Neural Plast; 2016; 2016():1478684. PubMed ID: 26885400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states.
    Allegrini P; Paradisi P; Menicucci D; Laurino M; Piarulli A; Gemignani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032808. PubMed ID: 26465529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lempel-Ziv complexity of cortical activity during sleep and waking in rats.
    Abásolo D; Simons S; Morgado da Silva R; Tononi G; Vyazovskiy VV
    J Neurophysiol; 2015 Apr; 113(7):2742-52. PubMed ID: 25717159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical Dynamics and Coupling in Bursts of Cortical Rhythms Indicate Non-Homeostatic Mechanism for Sleep-Stage Transitions and Dual Role of VLPO Neurons in Both Sleep and Wake.
    Lombardi F; Gómez-Extremera M; Bernaola-Galván P; Vetrivelan R; Saper CB; Scammell TE; Ivanov PC
    J Neurosci; 2020 Jan; 40(1):171-190. PubMed ID: 31694962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.
    Yeo BT; Tandi J; Chee MW
    Neuroimage; 2015 May; 111():147-58. PubMed ID: 25700949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The avalanche-like behaviour of large-scale haemodynamic activity from wakefulness to deep sleep.
    Bocaccio H; Pallavicini C; Castro MN; Sánchez SM; De Pino G; Laufs H; Villarreal MF; Tagliazucchi E
    J R Soc Interface; 2019 Sep; 16(158):20190262. PubMed ID: 31506046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local experience-dependent changes in the wake EEG after prolonged wakefulness.
    Hung CS; Sarasso S; Ferrarelli F; Riedner B; Ghilardi MF; Cirelli C; Tononi G
    Sleep; 2013 Jan; 36(1):59-72. PubMed ID: 23288972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the brain's functional network architecture in the transition from wake to sleep.
    Larson-Prior LJ; Power JD; Vincent JL; Nolan TS; Coalson RS; Zempel J; Snyder AZ; Schlaggar BL; Raichle ME; Petersen SE
    Prog Brain Res; 2011; 193():277-94. PubMed ID: 21854969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo approach to the cellular mechanisms for sensory processing in sleep and wakefulness.
    Velluti RA; Pedemonte M
    Cell Mol Neurobiol; 2002 Dec; 22(5-6):501-16. PubMed ID: 12585677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep.
    Rué-Queralt J; Stevner A; Tagliazucchi E; Laufs H; Kringelbach ML; Deco G; Atasoy S
    Commun Biol; 2021 Jul; 4(1):854. PubMed ID: 34244598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of neural synchronization in the emergence of cognition across the wake-sleep cycle.
    Cantero JL; Atienza M
    Rev Neurosci; 2005; 16(1):69-83. PubMed ID: 15810655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does sleep restore the topology of functional brain networks?
    Koenis MM; Romeijn N; Piantoni G; Verweij I; Van der Werf YD; Van Someren EJ; Stam CJ
    Hum Brain Mapp; 2013 Feb; 34(2):487-500. PubMed ID: 22076871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sound-induced perturbations of the brain network in non-REM sleep, and network oscillations in wake.
    Wu W; Sheth BR
    Psychophysiology; 2013 Mar; 50(3):274-86. PubMed ID: 23316945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.