These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24174989)

  • 1. SNP selection in genome-wide association studies via penalized support vector machine with MAX test.
    Kim J; Sohn I; Kim DD; Jung SH
    Comput Math Methods Med; 2013; 2013():340678. PubMed ID: 24174989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing.
    Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY
    J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance and robustness of penalized and unpenalized methods for genetic prediction of complex human disease.
    Abraham G; Kowalczyk A; Zobel J; Inouye M
    Genet Epidemiol; 2013 Feb; 37(2):184-95. PubMed ID: 23203348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Implementation of Penalized Regression for Genetic Risk Prediction.
    Privé F; Aschard H; Blum MGB
    Genetics; 2019 May; 212(1):65-74. PubMed ID: 30808621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological function integrated prediction of severe radiographic progression in rheumatoid arthritis: a nested case control study.
    Joo YB; Kim Y; Park Y; Kim K; Ryu JA; Lee S; Bang SY; Lee HS; Yi GS; Bae SC
    Arthritis Res Ther; 2017 Oct; 19(1):244. PubMed ID: 29065906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of a time-to-event trait using genome wide SNP data.
    Kim J; Sohn I; Son DS; Kim DH; Ahn T; Jung SH
    BMC Bioinformatics; 2013 Feb; 14():58. PubMed ID: 23418752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies.
    Lin X; Cai T; Wu MC; Zhou Q; Liu G; Christiani DC; Lin X
    Genet Epidemiol; 2011 Nov; 35(7):620-31. PubMed ID: 21818772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotype prediction from genome-wide association studies: application to smoking behaviors.
    Yoon D; Kim YJ; Park T
    BMC Syst Biol; 2012; 6 Suppl 2(Suppl 2):S11. PubMed ID: 23281841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association analysis by lasso penalized logistic regression.
    Wu TT; Chen YF; Hastie T; Sobel E; Lange K
    Bioinformatics; 2009 Mar; 25(6):714-21. PubMed ID: 19176549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning in genome-wide association studies.
    Szymczak S; Biernacka JM; Cordell HJ; González-Recio O; König IR; Zhang H; Sun YV
    Genet Epidemiol; 2009; 33 Suppl 1():S51-7. PubMed ID: 19924717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative hard thresholding for model selection in genome-wide association studies.
    Keys KL; Chen GK; Lange K
    Genet Epidemiol; 2017 Dec; 41(8):756-768. PubMed ID: 28875524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models.
    Bhatnagar SR; Yang Y; Lu T; Schurr E; Loredo-Osti JC; Forest M; Oualkacha K; Greenwood CMT
    PLoS Genet; 2020 May; 16(5):e1008766. PubMed ID: 32365090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of support vector machines for disease risk prediction in genome-wide association studies: concerns and opportunities.
    Mittag F; Büchel F; Saad M; Jahn A; Schulte C; Bochdanovits Z; Simón-Sánchez J; Nalls MA; Keller M; Hernandez DG; Gibbs JR; Lesage S; Brice A; Heutink P; Martinez M; Wood NW; Hardy J; Singleton AB; Zell A; Gasser T; Sharma M;
    Hum Mutat; 2012 Dec; 33(12):1708-18. PubMed ID: 22777693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A screening-testing approach for detecting gene-environment interactions using sequential penalized and unpenalized multiple logistic regression.
    Frost HR; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2015; ():183-94. PubMed ID: 25592580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Feature Encoding and Choice of Classifier on Disease Risk Prediction in Genome-Wide Association Studies.
    Mittag F; Römer M; Zell A
    PLoS One; 2015; 10(8):e0135832. PubMed ID: 26285210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
    Kang C; Yu H; Yi GS
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating group correlations in genome-wide association studies using smoothed group Lasso.
    Liu J; Huang J; Ma S; Wang K
    Biostatistics; 2013 Apr; 14(2):205-19. PubMed ID: 22988281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association studies using a penalized moving-window regression.
    Bao M; Wang K
    Bioinformatics; 2017 Dec; 33(24):3887-3894. PubMed ID: 28961706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.