These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 24175538)

  • 1. [Deposition and burial of organic carbon in coastal salt marsh: research progress].
    Cao L; Song JM; Li XG; Yuan HM; Li N; Duan LQ
    Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):2040-8. PubMed ID: 24175538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of salt-marsh carbon accumulation to climate change.
    Kirwan ML; Mudd SM
    Nature; 2012 Sep; 489(7417):550-3. PubMed ID: 23018965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate and plant controls on soil organic matter in coastal wetlands.
    Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB
    Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of methyl chloroform in a coastal salt marsh of eastern China.
    Wang J; Li R; Guo Y; Qin P; Sun S
    Chemosphere; 2006 Nov; 65(8):1371-80. PubMed ID: 16737728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary.
    Van de Broek M; Vandendriessche C; Poppelmonde D; Merckx R; Temmerman S; Govers G
    Glob Chang Biol; 2018 Jun; 24(6):2498-2512. PubMed ID: 29431887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.
    Drake K; Halifax H; Adamowicz SC; Craft C
    Environ Manage; 2015 Oct; 56(4):998-1008. PubMed ID: 26108413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global hotspots of salt marsh change and carbon emissions.
    Campbell AD; Fatoyinbo L; Goldberg L; Lagomasino D
    Nature; 2022 Dec; 612(7941):701-706. PubMed ID: 36450979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon metabolic rates and GHG emissions in different wetland types of the Ebro Delta.
    Morant D; Picazo A; Rochera C; Santamans AC; Miralles-Lorenzo J; Camacho-Santamans A; Ibañez C; Martínez-Eixarch M; Camacho A
    PLoS One; 2020; 15(4):e0231713. PubMed ID: 32320412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon and nutrient burial within Peruvian coastal marsh driven by anthropogenic activities.
    Pérez A; Escobedo R; Castro R; Jesus R; Cardich J; Romero PE; Salas-Gismondi R; Ochoa D; Aponte H; Sanders CJ; Carré M
    Mar Pollut Bull; 2022 Aug; 181():113948. PubMed ID: 35863205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.
    Stagg CL; Schoolmaster DR; Krauss KW; Cormier N; Conner WH
    Ecology; 2017 Aug; 98(8):2003-2018. PubMed ID: 28489250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise.
    Rogers K; Kelleway JJ; Saintilan N; Megonigal JP; Adams JB; Holmquist JR; Lu M; Schile-Beers L; Zawadzki A; Mazumder D; Woodroffe CD
    Nature; 2019 Mar; 567(7746):91-95. PubMed ID: 30842636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Influence of salt marsh vegetation on spatial distribution of soil carbon and nitrogen in Yancheng coastal wetland].
    Mao ZG; Wang GX; Liu JE; Ren LJ
    Ying Yong Sheng Tai Xue Bao; 2009 Feb; 20(2):293-7. PubMed ID: 19459366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability.
    Watson EB; Rahman FI; Woolfolk A; Meyer R; Maher N; Wigand C; Gray AB
    PLoS One; 2022; 17(9):e0273260. PubMed ID: 36084085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon sequestration and storage in Norwegian Arctic coastal wetlands: Impacts of climate change.
    Ward RD
    Sci Total Environ; 2020 Dec; 748():141343. PubMed ID: 32814292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands.
    Eagle MJ; Kroeger KD; Spivak AC; Wang F; Tang J; Abdul-Aziz OI; Ishtiaq KS; O'Keefe Suttles J; Mann AG
    Sci Total Environ; 2022 Nov; 848():157682. PubMed ID: 35917962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems.
    Sun H; Jiang J; Cui L; Feng W; Wang Y; Zhang J
    Sci Total Environ; 2019 Jul; 673():502-510. PubMed ID: 30995584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of blue carbon in tropical salt marshes and their role in climate change mitigation.
    Perera N; Lokupitiya E; Halwatura D; Udagedara S
    Sci Total Environ; 2022 May; 820():153313. PubMed ID: 35066046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands.
    Charles SP; Kominoski JS; Armitage AR; Guo H; Weaver CA; Pennings SC
    Ecology; 2020 Feb; 101(2):e02916. PubMed ID: 31646613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes.
    Kelleway JJ; Saintilan N; Macreadie PI; Skilbeck CG; Zawadzki A; Ralph PJ
    Glob Chang Biol; 2016 Mar; 22(3):1097-109. PubMed ID: 26670941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.