These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24175728)
41. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. Ferreira TM; Coreta-Gomes F; Ollila OH; Moreno MJ; Vaz WL; Topgaard D Phys Chem Chem Phys; 2013 Feb; 15(6):1976-89. PubMed ID: 23258433 [TBL] [Abstract][Full Text] [Related]
42. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. Fernández ML; Marshall G; Sagués F; Reigada R J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602 [TBL] [Abstract][Full Text] [Related]
43. jSimMacs for GROMACS: a Java application for advanced molecular dynamics simulations with remote access capability. Roopra S; Knapp B; Omasits U; Schreiner W J Chem Inf Model; 2009 Oct; 49(10):2412-7. PubMed ID: 19852516 [TBL] [Abstract][Full Text] [Related]
44. Molecular simulations of lipid flip-flop in the presence of model transmembrane helices. Sapay N; Bennett WF; Tieleman DP Biochemistry; 2010 Sep; 49(35):7665-73. PubMed ID: 20666375 [TBL] [Abstract][Full Text] [Related]
45. PROVAT: a tool for Voronoi tessellation analysis of protein structures and complexes. Gore SP; Burke DF; Blundell TL Bioinformatics; 2005 Aug; 21(15):3316-7. PubMed ID: 15932902 [TBL] [Abstract][Full Text] [Related]
46. Voro3D: 3D Voronoi tessellations applied to protein structures. Dupuis F; Sadoc JF; Jullien R; Angelov B; Mornon JP Bioinformatics; 2005 Apr; 21(8):1715-6. PubMed ID: 15217822 [TBL] [Abstract][Full Text] [Related]
47. Simulating G protein-coupled receptors in native-like membranes: from monomers to oligomers. Guixà-González R; Ramírez-Anguita JM; Kaczor AA; Selent J Methods Cell Biol; 2013; 117():63-90. PubMed ID: 24143972 [TBL] [Abstract][Full Text] [Related]
48. A molecular dynamics study of the lateral free energy profile of a pair of cholesterol molecules as a function of their distance in phospholipid bilayers. Andoh Y; Oono K; Okazaki S; Hatta I J Chem Phys; 2012 Apr; 136(15):155104. PubMed ID: 22519355 [TBL] [Abstract][Full Text] [Related]
49. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations. Posokhov YO; Kyrychenko A Comput Biol Chem; 2013 Oct; 46():23-31. PubMed ID: 23764528 [TBL] [Abstract][Full Text] [Related]
50. Combination of the CHARMM27 force field with united-atom lipid force fields. Sapay N; Tieleman DP J Comput Chem; 2011 May; 32(7):1400-10. PubMed ID: 21425293 [TBL] [Abstract][Full Text] [Related]
53. CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. Qi Y; Ingólfsson HI; Cheng X; Lee J; Marrink SJ; Im W J Chem Theory Comput; 2015 Sep; 11(9):4486-94. PubMed ID: 26575938 [TBL] [Abstract][Full Text] [Related]
54. Gro2mat: a package to efficiently read gromacs output in MATLAB. Dien H; Deane CM; Knapp B J Comput Chem; 2014 Jul; 35(20):1528-31. PubMed ID: 24920464 [TBL] [Abstract][Full Text] [Related]
55. Probing molecular forces in multi-component physiological membranes. Ray A; Gräter F; Thukral L Phys Chem Chem Phys; 2018 Jan; 20(4):2155-2161. PubMed ID: 29177331 [TBL] [Abstract][Full Text] [Related]
56. Enabling grand-canonical Monte Carlo: extending the flexibility of GROMACS through the GromPy python interface module. Pool R; Heringa J; Hoefling M; Schulz R; Smith JC; Feenstra KA J Comput Chem; 2012 May; 33(12):1207-14. PubMed ID: 22370965 [TBL] [Abstract][Full Text] [Related]
57. Visual dynamics: a WEB application for molecular dynamics simulation using GROMACS. Vieira IHP; Botelho EB; de Souza Gomes TJ; Kist R; Caceres RA; Zanchi FB BMC Bioinformatics; 2023 Mar; 24(1):107. PubMed ID: 36949402 [TBL] [Abstract][Full Text] [Related]