BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24175748)

  • 1. Targeting the redox metabolism of Plasmodium falciparum.
    Nepveu F; Turrini F
    Future Med Chem; 2013 Oct; 5(16):1993-2006. PubMed ID: 24175748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum.
    Müller S
    Mol Microbiol; 2004 Sep; 53(5):1291-305. PubMed ID: 15387810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione reductase-catalyzed cascade of redox reactions to bioactivate potent antimalarial 1,4-naphthoquinones--a new strategy to combat malarial parasites.
    Müller T; Johann L; Jannack B; Brückner M; Lanfranchi DA; Bauer H; Sanchez C; Yardley V; Deregnaucourt C; Schrével J; Lanzer M; Schirmer RH; Davioud-Charvet E
    J Am Chem Soc; 2011 Aug; 133(30):11557-71. PubMed ID: 21682307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.
    Meierjohann S; Walter RD; Müller S
    Biochem J; 2002 Dec; 368(Pt 3):761-8. PubMed ID: 12225291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox interactome in malaria parasite Plasmodium falciparum.
    Tiwari S; Sharma N; Sharma GP; Mishra N
    Parasitol Res; 2021 Feb; 120(2):423-434. PubMed ID: 33459846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloroquine mediates specific proteome oxidative damage across the erythrocytic cycle of resistant Plasmodium falciparum.
    Radfar A; Diez A; Bautista JM
    Free Radic Biol Med; 2008 Jun; 44(12):2034-42. PubMed ID: 18397762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents.
    Belorgey D; Lanfranchi DA; Davioud-Charvet E
    Curr Pharm Des; 2013; 19(14):2512-28. PubMed ID: 23116403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility of Plasmodium falciparum to glutamate dehydrogenase inhibitors--a possible new antimalarial target.
    Aparicio IM; Marín-Menéndez A; Bell A; Engel PC
    Mol Biochem Parasitol; 2010 Aug; 172(2):152-5. PubMed ID: 20399810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimalarial drugs and drug targets specific to fatty acid metabolic pathway of Plasmodium falciparum.
    Qidwai T; Khan F
    Chem Biol Drug Des; 2012 Aug; 80(2):155-72. PubMed ID: 22487082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Transport proteins as drug targets in Plasmodium falciparum. New perspectives in the treatment of malaria].
    Ellekvist P; Colding H
    Ugeskr Laeger; 2006 Mar; 168(13):1314-7. PubMed ID: 16579884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of heme O in intraerythrocytic stages of Plasmodium falciparum and potential inhibitors of this pathway.
    Simão-Gurge RM; Wunderlich G; Cricco JA; Cubillos EFG; Doménech-Carbó A; Cebrián-Torrejón G; Almeida FG; Cirulli BA; Katzin AM
    Sci Rep; 2019 Dec; 9(1):19261. PubMed ID: 31848371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Downstream effects of haemoglobinase inhibition in Plasmodium falciparum-infected erythrocytes.
    Naughton JA; Nasizadeh S; Bell A
    Mol Biochem Parasitol; 2010 Oct; 173(2):81-7. PubMed ID: 20478341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin and glutathione systems in Plasmodium falciparum.
    Jortzik E; Becker K
    Int J Med Microbiol; 2012 Oct; 302(4-5):187-94. PubMed ID: 22939033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico multiple-targets identification for heme detoxification in the human malaria parasite Plasmodium falciparum.
    Phaiphinit S; Pattaradilokrat S; Lursinsap C; Plaimas K
    Infect Genet Evol; 2016 Jan; 37():237-44. PubMed ID: 26626103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thioredoxin and glutathione system of malaria parasite Plasmodium falciparum.
    Müller S; Gilberger TW; Krnajski Z; Lüersen K; Meierjohann S; Walter RD
    Protoplasma; 2001; 217(1-3):43-9. PubMed ID: 11732337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proteomic glimpse into the effect of antimalarial drugs on Plasmodium falciparum proteome towards highlighting possible therapeutic targets.
    Dousti M; Manzano-Román R; Rashidi S; Barzegar G; Ahmadpour NB; Mohammadi A; Hatam G
    Pathog Dis; 2021 Jan; 79(1):. PubMed ID: 33202000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the export pathway of malaria surface proteins.
    Epp C; Deitsch K
    Trends Parasitol; 2006 Sep; 22(9):401-4. PubMed ID: 16843728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of Plasmodium falciparum schizonts reveals heparin-binding merozoite proteins.
    Zhang Y; Jiang N; Lu H; Hou N; Piao X; Cai P; Yin J; Wahlgren M; Chen Q
    J Proteome Res; 2013 May; 12(5):2185-93. PubMed ID: 23566259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target.
    Hartuti ED; Inaoka DK; Komatsuya K; Miyazaki Y; Miller RJ; Xinying W; Sadikin M; Prabandari EE; Waluyo D; Kuroda M; Amalia E; Matsuo Y; Nugroho NB; Saimoto H; Pramisandi A; Watanabe YI; Mori M; Shiomi K; Balogun EO; Shiba T; Harada S; Nozaki T; Kita K
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):191-200. PubMed ID: 29269266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimalarial effect of N-acetyl-L-Leucyl-L-leucyl-L-norleucinal by the inhibition of Plasmodium falciparum Calpain.
    Jung SY; Zheng B; Choi YY; Soh BY; Kim SY; Park KI; Park H
    Arch Pharm Res; 2009 Jun; 32(6):899-906. PubMed ID: 19557368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.