These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 24175947)
1. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand. Reinstein O; Yoo M; Han C; Palmo T; Beckham SA; Wilce MC; Johnson PE Biochemistry; 2013 Dec; 52(48):8652-62. PubMed ID: 24175947 [TBL] [Abstract][Full Text] [Related]
2. Engineering a structure switching mechanism into a steroid-binding aptamer and hydrodynamic analysis of the ligand binding mechanism. Reinstein O; Neves MA; Saad M; Boodram SN; Lombardo S; Beckham SA; Brouwer J; Audette GF; Groves P; Wilce MC; Johnson PE Biochemistry; 2011 Nov; 50(43):9368-76. PubMed ID: 21942676 [TBL] [Abstract][Full Text] [Related]
3. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer. Neves MAD; Shoara AA; Reinstein O; Abbasi Borhani O; Martin TR; Johnson PE ACS Sens; 2017 Oct; 2(10):1539-1545. PubMed ID: 28929744 [TBL] [Abstract][Full Text] [Related]
4. Defining a stem length-dependent binding mechanism for the cocaine-binding aptamer. A combined NMR and calorimetry study. Neves MA; Reinstein O; Johnson PE Biochemistry; 2010 Oct; 49(39):8478-87. PubMed ID: 20735071 [TBL] [Abstract][Full Text] [Related]
5. Structure-affinity relationship of the cocaine-binding aptamer with quinine derivatives. Slavkovic S; Altunisik M; Reinstein O; Johnson PE Bioorg Med Chem; 2015 May; 23(10):2593-7. PubMed ID: 25858454 [TBL] [Abstract][Full Text] [Related]
6. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Neves MA; Reinstein O; Saad M; Johnson PE Biophys Chem; 2010 Dec; 153(1):9-16. PubMed ID: 21035241 [TBL] [Abstract][Full Text] [Related]
7. Nanomolar binding affinity of quinine-based antimalarial compounds by the cocaine-binding aptamer. Slavkovic S; Churcher ZR; Johnson PE Bioorg Med Chem; 2018 Nov; 26(20):5427-5434. PubMed ID: 30266453 [TBL] [Abstract][Full Text] [Related]
8. Salt-mediated two-site ligand binding by the cocaine-binding aptamer. Neves MAD; Slavkovic S; Churcher ZR; Johnson PE Nucleic Acids Res; 2017 Feb; 45(3):1041-1048. PubMed ID: 28025391 [TBL] [Abstract][Full Text] [Related]
9. Development of a thermal-stable structure-switching cocaine-binding aptamer. Shoara AA; Reinstein O; Borhani OA; Martin TR; Slavkovic S; Churcher ZR; Johnson PE Biochimie; 2018 Feb; 145():137-144. PubMed ID: 28838608 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the free and ligand-bound imino hydrogen exchange rates for the cocaine-binding aptamer. Churcher ZR; Neves MAD; Hunter HN; Johnson PE J Biomol NMR; 2017 May; 68(1):33-39. PubMed ID: 28477231 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Aptamer-Small Molecule Binding Interactions Using Isothermal Titration Calorimetry. Slavkovic S; Johnson PE Methods Mol Biol; 2023; 2570():105-118. PubMed ID: 36156777 [TBL] [Abstract][Full Text] [Related]
12. Reduction in Dynamics of Base pair Opening upon Ligand Binding by the Cocaine-Binding Aptamer. Churcher ZR; Garaev D; Hunter HN; Johnson PE Biophys J; 2020 Sep; 119(6):1147-1156. PubMed ID: 32882188 [TBL] [Abstract][Full Text] [Related]
13. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein. Amano R; Takada K; Tanaka Y; Nakamura Y; Kawai G; Kozu T; Sakamoto T Biochemistry; 2016 Nov; 55(45):6221-6229. PubMed ID: 27766833 [TBL] [Abstract][Full Text] [Related]
14. Investigating the malleability of RNA aptamers. Ilgu M; Wang T; Lamm MH; Nilsen-Hamilton M Methods; 2013 Sep; 63(2):178-87. PubMed ID: 23535583 [TBL] [Abstract][Full Text] [Related]
15. Specificity and Ligand Affinities of the Cocaine Aptamer: Impact of Structural Features and Physiological NaCl. Sachan A; Ilgu M; Kempema A; Kraus GA; Nilsen-Hamilton M Anal Chem; 2016 Aug; 88(15):7715-23. PubMed ID: 27348073 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamics and kinetics of adaptive binding in the malachite green RNA aptamer. Da Costa JB; Andreiev AI; Dieckmann T Biochemistry; 2013 Sep; 52(38):6575-83. PubMed ID: 23984874 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism. Slavkovic S; Zhu Y; Churcher ZR; Shoara AA; Johnson AE; Johnson PE Sci Rep; 2020 Nov; 10(1):18944. PubMed ID: 33144644 [TBL] [Abstract][Full Text] [Related]
18. Entropy and Mg2+ control ligand affinity and specificity in the malachite green binding RNA aptamer. Bernard Da Costa J; Dieckmann T Mol Biosyst; 2011 Jul; 7(7):2156-63. PubMed ID: 21523267 [TBL] [Abstract][Full Text] [Related]
19. Conformational dynamics of an ATP-binding DNA aptamer: a single-molecule study. Xia T; Yuan J; Fang X J Phys Chem B; 2013 Dec; 117(48):14994-5003. PubMed ID: 24245799 [TBL] [Abstract][Full Text] [Related]
20. Energetic basis of molecular recognition in a DNA aptamer. Bishop GR; Ren J; Polander BC; Jeanfreau BD; Trent JO; Chaires JB Biophys Chem; 2007 Mar; 126(1-3):165-75. PubMed ID: 16914261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]