BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 24176727)

  • 21. Remapping the remembered target location for anti-saccades in human posterior parietal cortex.
    Medendorp WP; Goltz HC; Vilis T
    J Neurophysiol; 2005 Jul; 94(1):734-40. PubMed ID: 15788514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time course of cross-hemispheric spatial updating in the human parietal cortex.
    Bellebaum C; Daum I
    Behav Brain Res; 2006 Apr; 169(1):150-61. PubMed ID: 16442641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks.
    Mushiake H; Fujii N; Tanji J
    J Neurophysiol; 1999 Mar; 81(3):1443-8. PubMed ID: 10085372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism.
    Goldberg MC; Lasker AG; Zee DS; Garth E; Tien A; Landa RJ
    Neuropsychologia; 2002; 40(12):2039-49. PubMed ID: 12208001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial updating in area LIP is independent of saccade direction.
    Heiser LM; Colby CL
    J Neurophysiol; 2006 May; 95(5):2751-67. PubMed ID: 16291805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individual variation in the location of the parietal eye fields: a TMS study.
    Ryan S; Bonilha L; Jackson SR
    Exp Brain Res; 2006 Aug; 173(3):389-94. PubMed ID: 16506006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery of contralesional saccade choice and reaction time deficits after a unilateral endothelin-1-induced lesion in the macaque caudal prefrontal cortex.
    Adam R; Johnston K; Everling S
    J Neurophysiol; 2019 Aug; 122(2):672-690. PubMed ID: 31215310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.
    Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG
    J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neural basis of parallel saccade programming: an fMRI study.
    Hu Y; Walker R
    J Cogn Neurosci; 2011 Nov; 23(11):3669-80. PubMed ID: 21563883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oculomotor control after hemidecortication: a single hemisphere encodes corollary discharges for bilateral saccades.
    Rath-Wilson K; Guitton D
    Cortex; 2015 Feb; 63():232-49. PubMed ID: 25299582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parietal damage dissociates saccade planning from presaccadic perceptual facilitation.
    Khan AZ; Blangero A; Rossetti Y; Salemme R; Luauté J; Deubel H; Schneider WX; Laverdure N; Rode G; Boisson D; Pisella L
    Cereb Cortex; 2009 Feb; 19(2):383-7. PubMed ID: 18534990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-latency allocentric control of saccadic eye movements.
    Chakrabarty M; Nakano T; Kitazawa S
    J Neurophysiol; 2017 Jan; 117(1):376-387. PubMed ID: 27784804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of saccade inhibition processes: rapid event-related fMRI of saccades and nogo trials.
    Brown MR; Vilis T; Everling S
    Neuroimage; 2008 Jan; 39(2):793-804. PubMed ID: 17977025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Müller-Lyer illusion affects visuomotor updating in the dorsal visual stream.
    de Brouwer AJ; Smeets JB; Gutteling TP; Toni I; Medendorp WP
    Neuropsychologia; 2015 Oct; 77():119-27. PubMed ID: 26282275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Saccadic gain modification: visual error drives motor adaptation.
    Wallman J; Fuchs AF
    J Neurophysiol; 1998 Nov; 80(5):2405-16. PubMed ID: 9819252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pre-saccadic perceptual facilitation can occur without covert orienting of attention.
    Blangero A; Khan AZ; Salemme R; Deubel H; Schneider WX; Rode G; Vighetto A; Rossetti Y; Pisella L
    Cortex; 2010 Oct; 46(9):1132-7. PubMed ID: 19660745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Different memory types for generating saccades at different stages of learning.
    Horaguchi T; Sugino K
    Neurosci Res; 2006 Jul; 55(3):271-84. PubMed ID: 16720055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for ocular motor deficits in developmental dyslexia: application of the double-step paradigm.
    Ram-Tsur R; Faust M; Caspi A; Gordon CR; Zivotofsky AZ
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4401-9. PubMed ID: 17003432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing.
    Connolly JD; Goodale MA; DeSouza JF; Menon RS; Vilis T
    J Neurophysiol; 2000 Sep; 84(3):1645-55. PubMed ID: 10980034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.