These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 24176878)

  • 1. Open loop Kelvin probe force microscopy with single and multi-frequency excitation.
    Collins L; Kilpatrick JI; Weber SA; Tselev A; Vlassiouk IV; Ivanov IN; Jesse S; Kalinin SV; Rodriguez BJ
    Nanotechnology; 2013 Nov; 24(47):475702. PubMed ID: 24176878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kelvin probe force microscopy in liquid using electrochemical force microscopy.
    Collins L; Jesse S; Kilpatrick JI; Tselev A; Okatan MB; Kalinin SV; Rodriguez BJ
    Beilstein J Nanotechnol; 2015; 6():201-14. PubMed ID: 25671164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy.
    Biglarbeigi P; Morelli A; Pauly S; Yu Z; Jiang W; Sharma S; Finlay D; Kumar A; Soin N; Payam AF
    ACS Nano; 2023 Nov; 17(21):21506-21517. PubMed ID: 37877266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardization of surface potential measurements of graphene domains.
    Panchal V; Pearce R; Yakimova R; Tzalenchuk A; Kazakova O
    Sci Rep; 2013; 3():2597. PubMed ID: 24008915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions.
    Zahmatkeshsaredorahi A; Jakob DS; Xu XG
    J Phys Chem C Nanomater Interfaces; 2024 Jun; 128(24):9813-9827. PubMed ID: 38919728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative characterization of built-in potential profile across GaAs p-n junctions using Kelvin probe force microscopy with qPlus sensor AFM.
    Ishida N; Mano T
    Nanotechnology; 2023 Nov; 35(6):. PubMed ID: 37944481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation.
    Wrana D; Cieślik K; Belza W; Rodenbücher C; Szot K; Krok F
    Beilstein J Nanotechnol; 2019; 10():1596-1607. PubMed ID: 31467822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kelvin probe force microscopy for local characterisation of active nanoelectronic devices.
    Wagner T; Beyer H; Reissner P; Mensch P; Riel H; Gotsmann B; Stemmer A
    Beilstein J Nanotechnol; 2015; 6():2193-206. PubMed ID: 26734511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kelvin probe force microscopy on patterned large-area biofunctionalized surfaces: a reliable ultrasensitive platform for biomarker detection.
    Di Franco C; Piscitelli M; Macchia E; Scandurra C; Catacchio M; Torsi L; Scamarcio G
    J Mater Chem C Mater; 2023 Dec; 12(1):73-79. PubMed ID: 38143451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct study of the electrical properties of PC12 cells and hippocampal neurons by EFM and KPFM.
    Zhao W; Cui W; Xu S; Cheong LZ; Wang D; Shen C
    Nanoscale Adv; 2019 Feb; 1(2):537-545. PubMed ID: 36132273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-heterodyne Kelvin probe force microscopy.
    Grévin B; Husainy F; Aldakov D; Aumaître C
    Beilstein J Nanotechnol; 2023; 14():1068-1084. PubMed ID: 38025199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water.
    Hackl T; Schitter G; Mesquida P
    ACS Nano; 2022 Nov; 16(11):17982-17990. PubMed ID: 36215653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water.
    Kilpatrick JI; Kargin E; Rodriguez BJ
    Beilstein J Nanotechnol; 2022; 13():922-943. PubMed ID: 36161252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode.
    Stan G; Namboodiri P
    Beilstein J Nanotechnol; 2021; 12():1115-1126. PubMed ID: 34703722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled Investigation of Contact Potential and Microstructure Evolution of Ultra-Thin AlO
    Zheng Z; An J; Gong R; Zeng Y; Ye J; Yu L; Florea I; Roca I Cabarrocas P; Chen W
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Charge Accumulation and Its Effect on Carrier Dynamics in Tri-cation Perovskite Structures.
    Toth D; Hailegnaw B; Richheimer F; Castro FA; Kienberger F; Scharber MC; Wood S; Gramse G
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48057-48066. PubMed ID: 32969644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of electrostatic tip-sample interactions by time-domain Kelvin probe force microscopy.
    Ritz C; Wagner T; Stemmer A
    Beilstein J Nanotechnol; 2020; 11():911-921. PubMed ID: 32596095
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.