BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 24177112)

  • 1. Angle independent flow assessment with bidirectional Doppler optical coherence tomography.
    Blatter C; Grajciar B; Schmetterer L; Leitgeb RA
    Opt Lett; 2013 Nov; 38(21):4433-6. PubMed ID: 24177112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography.
    Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels.
    Werkmeister RM; Dragostinoff N; Pircher M; Götzinger E; Hitzenberger CK; Leitgeb RA; Schmetterer L
    Opt Lett; 2008 Dec; 33(24):2967-9. PubMed ID: 19079508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography.
    Miura M; Makita S; Iwasaki T; Yasuno Y
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7137-41. PubMed ID: 22997290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography.
    Makita S; Fabritius T; Yasuno Y
    Opt Lett; 2008 Apr; 33(8):836-8. PubMed ID: 18414549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the absolute velocity of blood flow in early-stage chick embryos using spectral domain optical coherence tomography.
    Ma ZH; Ma YS; Zhao YQ; Liu J; Liu JH; Lv JT; Wang Y
    Appl Opt; 2017 Nov; 56(31):8832-8837. PubMed ID: 29091702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic retinal blood flow calculation using spectral domain optical coherence tomography.
    Wehbe H; Ruggeri M; Jiao S; Gregori G; Puliafito CA; Zhao W
    Opt Express; 2007 Nov; 15(23):15193-206. PubMed ID: 19550803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology.
    Cense B; Chen TC; Nassif N; Pierce MC; Yun SH; Park BH; Bouma BE; Tearney GJ; de Boer JF
    Bull Soc Belge Ophtalmol; 2006; (302):123-32. PubMed ID: 17265794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal surface en face optical coherence tomography: a new imaging approach in epiretinal membrane surgery.
    Rispoli M; Le Rouic JF; Lesnoni G; Colecchio L; Catalano S; Lumbroso B
    Retina; 2012; 32(10):2070-6. PubMed ID: 22842490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.
    Liu W; Yi J; Chen S; Jiao S; Zhang HF
    Med Phys; 2015 Sep; 42(9):5356-62. PubMed ID: 26328984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Total average blood flow and angiography in the rat retina.
    Srinivasan VJ; Radhakrishnan H
    J Biomed Opt; 2013 Jul; 18(7):76025. PubMed ID: 23887484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography.
    Pedersen CJ; Huang D; Shure MA; Rollins AM
    Opt Lett; 2007 Mar; 32(5):506-8. PubMed ID: 17392903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography.
    Bukowska DM; Derzsi L; Tamborski S; Szkulmowski M; Garstecki P; Wojtkowski M
    Opt Express; 2013 Oct; 21(20):24025-38. PubMed ID: 24104312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic subaperture-based angle-independent Doppler flow measurements using single-beam line field optical coherence tomography in vivo.
    Ginner L; Wartak A; Salas M; Augustin M; Niederleithner M; Wurster LM; Leitgeb RA
    Opt Lett; 2019 Feb; 44(4):967-970. PubMed ID: 30768032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm.
    Motaghiannezam R; Schwartz DM; Fraser SE
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2337-48. PubMed ID: 22410568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow.
    Schmoll T; Leitgeb RA
    J Biophotonics; 2013 Mar; 6(3):275-82. PubMed ID: 22674668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in optical coherence tomography for imaging the retina.
    van Velthoven ME; Faber DJ; Verbraak FD; van Leeuwen TG; de Smet MD
    Prog Retin Eye Res; 2007 Jan; 26(1):57-77. PubMed ID: 17158086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography.
    Hong YJ; Miura M; Makita S; Ju MJ; Lee BH; Iwasaki T; Yasuno Y
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3621-31. PubMed ID: 23633664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.