These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24177118)

  • 1. Widely tunable mid-infrared generation via frequency conversion in semiconductor waveguides.
    Logan DF; Giguere M; Villeneuve A; Helmy AS
    Opt Lett; 2013 Nov; 38(21):4457-60. PubMed ID: 24177118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widely tunable frequency conversion in monolithic semiconductor waveguides at 2.4  μm.
    Abolghasem P; Kang D; Logan DF; Lungwitz M; Helmy AS
    Opt Lett; 2014 Jun; 39(12):3591-4. PubMed ID: 24978544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a hybrid As₂S₃-Ti:LiNbO₃ optical waveguide for phase-matched difference frequency generation at mid-infrared.
    Wang X; Madsen CK
    Opt Express; 2014 Nov; 22(22):27183-92. PubMed ID: 25401869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-infrared difference-frequency generation in suspended GaAs waveguides.
    Stievater TH; Mahon R; Park D; Rabinovich WS; Pruessner MW; Khurgin JB; Richardson CJ
    Opt Lett; 2014 Feb; 39(4):945-8. PubMed ID: 24562248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference-frequency generation in AlGaAs Bragg reflection waveguides.
    Han JB; Abolghasem P; Kang D; Bijlani BJ; Helmy AS
    Opt Lett; 2010 Jul; 35(14):2334-6. PubMed ID: 20634821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrabroadband midinfrared generation by using group-velocity-dispersion tailoring in a Bragg reflection waveguide for a difference-frequency-generation process.
    Das R; Thyagarajan K
    Appl Opt; 2009 Oct; 48(30):5678-82. PubMed ID: 19844300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlxGa1-xAs nested waveguide heterostructures for continuously phase-matched terahertz difference frequency generation.
    Staus CM; Kuech TF; McCaughan L
    Opt Express; 2010 Feb; 18(3):2332-8. PubMed ID: 20174063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz wave generation by nanoconfinement of light.
    Zangeneh HR; Jahromi MA
    Appl Opt; 2014 Mar; 53(9):1826-31. PubMed ID: 24663459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 4.8 μm difference-frequency generation using a waveguide-PPLN crystal and its application to mid-infrared Lamb-dip spectroscopy.
    Kuma S; Miyamoto Y; Tsutsumi K; Sasao N; Uetake S
    Opt Lett; 2013 Aug; 38(15):2825-8. PubMed ID: 23903153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Wen J
    Opt Express; 2012 Apr; 20(8):8920-8. PubMed ID: 22513603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple-wavelength quasi-phase-matching for efficient idler generation in MgO:LiNbO3 based nanosecond optical parametric oscillator.
    Naraniya OP; Shenoy MR; Thyagarajan K
    Appl Opt; 2012 Mar; 51(9):1312-7. PubMed ID: 22441477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide.
    Karim MR; Rahman BM; Agrawal GP
    Opt Express; 2015 Mar; 23(5):6903-14. PubMed ID: 25836910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5.2-5.6-microm source tunable by frequency conversion in a GaAs-based waveguide.
    Bravetti P; Fiore A; Berger V; Rosencher E; Nagle J; Gauthier-Lafaye O
    Opt Lett; 1998 Mar; 23(5):331-3. PubMed ID: 18084502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High energy and tunable mid-infrared source based on BaGa
    He Y; Guo Y; Xu D; Wang Y; Zhu X; Yao J; Yan C; Tang L; Li J; Zhong K; Liu C; Fan X; Wu Y; Yao J
    Opt Express; 2019 Mar; 27(6):9241-9249. PubMed ID: 31052731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suspended AlGaAs waveguides for tunable difference frequency generation in mid-infrared.
    Khurgin JB; Pruessner MW; Stievater TH; Rabinovich WS
    Opt Lett; 2008 Dec; 33(24):2904-6. PubMed ID: 19079487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Wavelength conversion and spectral analysis in periodically polarized lithium niobate waveguide].
    Luo CH; Sun JQ; Zhu YX; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1209-12. PubMed ID: 18800689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of zigzag folded inversion-stacked AlGaAs waveguides for ultra-compact wavelength converters.
    Matsushita T; Nakamura Y; Kondo T
    Opt Express; 2017 Sep; 25(19):22829-22839. PubMed ID: 29041589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation.
    Chi M; Jensen OB; Erbert G; Sumpf B; Petersen PM
    Appl Opt; 2011 Jan; 50(1):90-4. PubMed ID: 21221165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides.
    Han J; Abolghasem P; Bijlani BJ; Helmy AS
    Opt Lett; 2009 Dec; 34(23):3656-8. PubMed ID: 19953152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-IR multiwavelength difference frequency generation based on fiber lasers.
    Jiang J; Chang J; Feng S; Wei L; Mao Q
    Opt Express; 2010 Mar; 18(5):4740-7. PubMed ID: 20389487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.