These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 24177135)

  • 1. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.
    Moreira R; Schütz MK; Libert M; Tribollet B; Vivier V
    Bioelectrochemistry; 2014 Jun; 97():69-75. PubMed ID: 24177135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity.
    Schütz MK; Moreira R; Bildstein O; Lartigue JE; Schlegel ML; Tribollet B; Vivier V; Libert M
    Bioelectrochemistry; 2014 Jun; 97():61-8. PubMed ID: 24064199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of iron-reducing bacteria on the corrosion rate of carbon steel under simulated geological disposal conditions.
    Schütz MK; Schlegel ML; Libert M; Bildstein O
    Environ Sci Technol; 2015 Jun; 49(12):7483-90. PubMed ID: 25988515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion behaviour and biocorrosion of galvanized steel water distribution systems.
    Delaunois F; Tosar F; Vitry V
    Bioelectrochemistry; 2014 Jun; 97():110-9. PubMed ID: 24503139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes.
    Libert M; Schütz MK; Esnault L; Féron D; Bildstein O
    Bioelectrochemistry; 2014 Jun; 97():162-8. PubMed ID: 24177136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater.
    Rajala P; Bomberg M; Vepsäläinen M; Carpén L
    Biofouling; 2017 Feb; 33(2):195-209. PubMed ID: 28198664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion of low carbon steel by microorganisms from the 'pigging' operation debris in water injection pipelines.
    Cote C; Rosas O; Sztyler M; Doma J; Beech I; Basseguy R
    Bioelectrochemistry; 2014 Jun; 97():97-109. PubMed ID: 24355513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism.
    Dall'agnol LT; Cordas CM; Moura JJ
    Bioelectrochemistry; 2014 Jun; 97():43-51. PubMed ID: 24238897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.
    Wikieł AJ; Datsenko I; Vera M; Sand W
    Bioelectrochemistry; 2014 Jun; 97():52-60. PubMed ID: 24238898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants.
    Ashassi-Sorkhabi H; Moradi-Haghighi M; Zarrini G; Javaherdashti R
    Biodegradation; 2012 Feb; 23(1):69-79. PubMed ID: 21695454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides.
    Finkenstadt VL; Côté GL; Willett JL
    Biotechnol Lett; 2011 Jun; 33(6):1093-100. PubMed ID: 21290167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into the mechanism of carbon steel corrosion under aerobic and anaerobic conditions.
    El Mendili Y; Abdelouas A; Bardeau JF
    Phys Chem Chem Phys; 2013 Jun; 15(23):9197-204. PubMed ID: 23652337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory and bactericidal action of the biocorrosion agents «INCORGAS» and «AMDOR».
    Tsygankova LE; Vigdorovich VI; Esina MN; Nazina TN; Dubinskaya EV
    Bioelectrochemistry; 2014 Jun; 97():154-61. PubMed ID: 24210782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions.
    Miller RB; Lawson K; Sadek A; Monty CN; Senko JM
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.
    Miller RB; Sadek A; Rodriguez A; Iannuzzi M; Giai C; Senko JM; Monty CN
    PLoS One; 2016; 11(1):e0147899. PubMed ID: 26824529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion of carbon steel by bacteria from North Sea offshore seawater injection systems: laboratory investigation.
    Stipanicev M; Turcu F; Esnault L; Rosas O; Basseguy R; Sztyler M; Beech IB
    Bioelectrochemistry; 2014 Jun; 97():76-88. PubMed ID: 24169516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel.
    Pakiet M; Kowalczyk I; Leiva Garcia R; Moorcroft R; Nichol T; Smith T; Akid R; Brycki B
    Bioelectrochemistry; 2019 Aug; 128():252-262. PubMed ID: 31048108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.
    Melchers RE
    Bioelectrochemistry; 2014 Jun; 97():89-96. PubMed ID: 24067447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms.
    Zuo R; Wood TK
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):747-53. PubMed ID: 15278311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.