These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24177493)

  • 41. Vibrational mode and collision energy effects on reaction of H2CO+ with C2D4.
    Liu J; Van Devener B; Anderson SL
    J Chem Phys; 2004 Dec; 121(23):11746-59. PubMed ID: 15634139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mode selective chemistry for the dissociation of methane on efficient Ni/Pt-bimetallic alloy catalysts.
    Roy S; Tiwari AK
    Phys Chem Chem Phys; 2022 Jul; 24(27):16596-16610. PubMed ID: 35788584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quasi-classical trajectory calculations analyzing the dynamics of the C-H stretch mode excitation in the H+CHD3 reaction.
    Espinosa-García J
    J Phys Chem A; 2007 Jul; 111(26):5792-9. PubMed ID: 17567117
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity.
    Seenivasan H; Jackson B; Tiwari AK
    J Chem Phys; 2017 Feb; 146(7):074705. PubMed ID: 28228037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intramolecular vibrational dynamics in free polyatomic molecules with C═O chromophore bond excited by resonant femtosecond IR laser radiation.
    Chekalin SV; Kompanets VO; Koshlyakov PV; Laptev VB; Pigulsky SV; Makarov AA; Ryabov EA
    J Phys Chem A; 2014 Feb; 118(6):955-64. PubMed ID: 24467228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical investigation of intramolecular vibrational energy redistribution in highly excited HFCO.
    Pasin G; Gatti F; Iung C; Meyer HD
    J Chem Phys; 2006 May; 124(19):194304. PubMed ID: 16729811
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microcanonical unimolecular rate theory at surfaces. II. Vibrational state resolved dissociative chemisorption of methane on Ni(100).
    Abbott HL; Bukoski A; Harrison I
    J Chem Phys; 2004 Aug; 121(8):3792-810. PubMed ID: 15303948
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantum State-Resolved Studies of Chemisorption Reactions.
    Chadwick H; Beck RD
    Annu Rev Phys Chem; 2017 May; 68():39-61. PubMed ID: 28142313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Towards bond selective chemistry from first principles: methane on metal surfaces.
    Shen XJ; Lozano A; Dong W; Busnengo HF; Yan XH
    Phys Rev Lett; 2014 Jan; 112(4):046101. PubMed ID: 24580470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quasi-classical trajectory calculations of the hydrogen abstraction reaction H + NH3.
    Espinosa-García J; Corchado JC
    J Phys Chem A; 2010 Jun; 114(21):6194-200. PubMed ID: 20459146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quasi-classical trajectory calculations analyzing the reactivity and dynamics of asymmetric stretch mode excitations of methane in the H + CH4 reaction.
    Rangel C; Corchado JC; Espinosa-García J
    J Phys Chem A; 2006 Sep; 110(35):10375-83. PubMed ID: 16942042
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quasi-classical trajectory study of the vibrational and translational effects on the O((3)P) + CD4 reaction.
    Espinosa-Garcia J
    J Phys Chem A; 2014 May; 118(20):3572-9. PubMed ID: 24786320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intramolecular vibrational energy redistribution in aromatic molecules of type C₆H₅X (X = H, D, F, Cl, CH₃, CF₃).
    von Benten RS; Liu Y; Abel B
    J Phys Chem A; 2010 Nov; 114(43):11522-8. PubMed ID: 20931954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamical traps lead to the slowing down of intramolecular vibrational energy flow.
    Manikandan P; Keshavamurthy S
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14354-9. PubMed ID: 25246538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Variational study on the vibrational level structure and IVR behavior of highly vibrationally excited S0 formaldehyde.
    Rashev S; Moule DC
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 87():286-92. PubMed ID: 22185953
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2.
    Bechtel HA; Kim ZH; Camden JP; Zare RN
    J Chem Phys; 2004 Jan; 120(2):791-9. PubMed ID: 15267915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Femtochemistry of Norrish type-I reactions: III. Highly excited ketones--theoretical.
    Diau EW; Kötting C; Sølling TI; Zewail AH
    Chemphyschem; 2002 Jan; 3(1):57-78. PubMed ID: 12465477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamical insights into (1)pi sigma(*) state mediated photodissociation of aniline.
    King GA; Oliver TA; Ashfold MN
    J Chem Phys; 2010 Jun; 132(21):214307. PubMed ID: 20528022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantum-state resolved reactive scattering at the gas-liquid interface: F+squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J).
    Zolot AM; Dagdigian PJ; Nesbitt DJ
    J Chem Phys; 2008 Nov; 129(19):194705. PubMed ID: 19026079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.