These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24177598)

  • 1. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.).
    King ZR; Bray AL; Lafayette PR; Parrott WA
    Plant Cell Rep; 2014 Feb; 33(2):313-22. PubMed ID: 24177598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation.
    Mann DG; King ZR; Liu W; Joyce BL; Percifield RJ; Hawkins JS; LaFayette PR; Artelt BJ; Burris JN; Mazarei M; Bennetzen JL; Parrott WA; Stewart CN
    BMC Biotechnol; 2011 Jul; 11():74. PubMed ID: 21745390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass.
    Chen Q; Song GQ
    Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.).
    Ramamoorthy R; Kumar PP
    Plant Cell Rep; 2012 Oct; 31(10):1923-31. PubMed ID: 22733209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.
    Liu YR; Cen HF; Yan JP; Zhang YW; Zhang WJ
    Plant Cell Rep; 2015 Jul; 34(7):1099-108. PubMed ID: 25698105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.).
    Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A
    BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.).
    Burris KP; Dlugosz EM; Collins AG; Stewart CN; Lenaghan SC
    Plant Cell Rep; 2016 Mar; 35(3):693-704. PubMed ID: 26685665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (
    Ondzighi-Assoume CA; Willis JD; Ouma WK; Allen SM; King Z; Parrott WA; Liu W; Burris JN; Lenaghan SC; Stewart CN
    Biotechnol Biofuels; 2019; 12():290. PubMed ID: 31890018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species.
    Mann DG; Lafayette PR; Abercrombie LL; King ZR; Mazarei M; Halter MC; Poovaiah CR; Baxter H; Shen H; Dixon RA; Parrott WA; Neal Stewart C
    Plant Biotechnol J; 2012 Feb; 10(2):226-36. PubMed ID: 21955653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biolistic transformation of cotton embryogenic cell suspension cultures.
    Rajasekaran K
    Methods Mol Biol; 2013; 958():59-70. PubMed ID: 23143483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum).
    Rao X; Chen X; Shen H; Ma Q; Li G; Tang Y; Pena M; York W; Frazier TP; Lenaghan S; Xiao X; Chen F; Dixon RA
    Plant Biotechnol J; 2019 Mar; 17(3):580-593. PubMed ID: 30133139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic transformation of switchgrass.
    Xi Y; Ge Y; Wang ZY
    Methods Mol Biol; 2009; 581():53-9. PubMed ID: 19768615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved node culture methods for rapid vegetative propagation of switchgrass (Panicum virgatum L.).
    Wang Y; Dong W; Saha MC; Udvardi MK; Kang Y
    BMC Plant Biol; 2021 Mar; 21(1):128. PubMed ID: 33663376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biolistic Transformation of Cotton Embryogenic Cell Suspension Cultures.
    Rajasekaran K
    Methods Mol Biol; 2019; 1902():55-66. PubMed ID: 30543061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars.
    Basnayake SW; Moyle R; Birch RG
    Plant Cell Rep; 2011 Mar; 30(3):439-48. PubMed ID: 20978767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved tissue culture conditions for the emerging C
    Grant JN; Burris JN; Stewart CN; Lenaghan SC
    BMC Biotechnol; 2017 Apr; 17(1):39. PubMed ID: 28449656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgene autoexcision in switchgrass pollen mediated by the Bxb1 recombinase.
    Somleva MN; Xu CA; Ryan KP; Thilmony R; Peoples O; Snell KD; Thomson J
    BMC Biotechnol; 2014 Aug; 14():79. PubMed ID: 25148894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass.
    Yan J; Liu Y; Wang K; Li D; Hu Q; Zhang W
    Plant Sci; 2018 Nov; 276():143-151. PubMed ID: 30348312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Improved Leaf Protoplast System for Highly Efficient Transient Expression in Switchgrass (Panicum virgatum L.).
    Lin CY; Wei H; Donohoe BS; Tucker MP; Himmel ME
    Methods Mol Biol; 2020; 2096():61-79. PubMed ID: 32720147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of parameters affecting switchgrass tissue culture: toward a consolidated procedure for
    Lin CY; Donohoe BS; Ahuja N; Garrity DM; Qu R; Tucker MP; Himmel ME; Wei H
    Plant Methods; 2017; 13():113. PubMed ID: 29270209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.