These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24177655)

  • 1. Different binding sites for glucose and sorbose at the erythrocyte membrane, studied by gel filtration and infrared spectroscopy.
    Zimmer G; Lacko L; Günther H
    J Membr Biol; 1972 Dec; 9(1):305-18. PubMed ID: 24177655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different binding sites for glucose and sorbose at the erythrocyte membrane, studied by gel filtration and infrared spectroscopy.
    Zimmer G; Lacko L; Günther H
    J Membr Biol; 1972; 9(4):305-18. PubMed ID: 4674401
    [No Abstract]   [Full Text] [Related]  

  • 3. Lipid-protein interactions at the erythrocyte membrane. Different influence of glucose and sorbose on membrane lipid transition.
    Zimmer G; Schirmer H; Bastian P
    Biochim Biophys Acta; 1975 Aug; 401(2):244-55. PubMed ID: 1156593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural requirements for binding to the sugar-transport system of the human erythrocyte.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of glucose transport across the yeast cell membrane.
    CIRILLO VP
    J Bacteriol; 1962 Sep; 84(3):485-91. PubMed ID: 14021412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence from studies of temperature-dependent changes of D-glucose, D-mannose and L-sorbose permeability that different states of activation of the human erythrocyte hexose transporter exist for good and bad substrates.
    Naftalin RJ
    Biochim Biophys Acta; 1997 Aug; 1328(1):13-29. PubMed ID: 9298941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of sodium pentobarbital with D-glucose and L-sorbose transport in human red cells.
    Naftalin RJ; Arain M
    Biochim Biophys Acta; 1999 Jun; 1419(1):78-88. PubMed ID: 10366673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of L-sorbose on red cell flow properties, shape and packing ability.
    Stäubli M; Wälchli P; Straub PW
    Biorheology; 1985; 22(3):175-84. PubMed ID: 4041580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system.
    Barnett JE; Holman GD; Chalkley RA; Munday KA
    Biochem J; 1975 Mar; 145(3):417-29. PubMed ID: 1156368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes.
    Zoccoli MA; Lienhard GE
    J Biol Chem; 1977 May; 252(10):3131-5. PubMed ID: 863876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence from temperature studies that the human erythrocyte hexose transporter has a transient memory of its dissociated ligands.
    Naftalin RJ
    Exp Physiol; 1998 Mar; 83(2):253-8. PubMed ID: 9568486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of glucose and metformin with isolated red cell membrane.
    Freisleben HJ; Fürstenberger HJ; Deisinger S; Freisleben KB; Wiernsperger N; Zimmer G
    Arzneimittelforschung; 1996 Aug; 46(8):773-8. PubMed ID: 9125277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings: Different influence of glucose and sorbose and erythrocyte membrane lipid transition.
    Zimmer G; Schirmer H
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1273. PubMed ID: 4461628
    [No Abstract]   [Full Text] [Related]  

  • 14. Solubilization and separation of the human erythrocyte D-glucose transporter covalently and noncovalently photoaffinity-labeled with [3H]cytochalasin B.
    Kurokawa T; Tillotson LG; Chen CC; Isselbacher KJ
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):479-82. PubMed ID: 3455783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallization and Properties of NADPH-Dependent L-Sorbose Reductase from Gluconobacter melanogenus IFO 3294.
    Adachi O; Ano Y; Moonmangmee D; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 1999; 63(12):2137-43. PubMed ID: 27373916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of L-sorbose on polysaccharide synthetases of Neurospora crassa (glycogen- -1,3-glucan-morphology-cell wall-digitonin-particulate enzymes).
    Mishra NC; Tatum EL
    Proc Natl Acad Sci U S A; 1972 Feb; 69(2):313-7. PubMed ID: 4258315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Specificity of sugar binding to erythrocyte membrane fractions].
    Zimmer G; Lacko L
    Hoppe Seylers Z Physiol Chem; 1969 Oct; 350(10):1169. PubMed ID: 5352327
    [No Abstract]   [Full Text] [Related]  

  • 18. Sorbose counterflow as a measure of intracellular glucose in baker's yeast.
    Wilkins PO; Cirillo VP
    J Bacteriol; 1965 Dec; 90(6):1605-10. PubMed ID: 5854586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible permeability changes in the membrane of a yeast cell sugar compartment.
    Spoerl E; Benedict SH; Lowery SN; Williams JP; Zahand JP
    J Membr Biol; 1975; 20(3-4):319-40. PubMed ID: 1095751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-Sorbose but not D-tagatose induces hemolysis of dog erythrocytes in vitro.
    Bär A; Leeman WR
    Regul Toxicol Pharmacol; 1999 Apr; 29(2 Pt 2):S43-5. PubMed ID: 10341160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.