These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24177980)

  • 1. Inorganic-carbon assimilation in the green seaweed Ulva rigida C.Ag. (Chlorophyta).
    Björk M; Haglund K; Ramazanov Z; Garcia-Reina G; Pedersén M
    Planta; 1992 Apr; 187(1):152-6. PubMed ID: 24177980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of carbonic anhydrase in photosynthesis and inorganic-carbon assimilation in the red alga Gracilaria tenuistipitata.
    Haglund K; Björk M; Ramazanov Z; García-Reina G; Pedersén M
    Planta; 1992 May; 187(2):275-81. PubMed ID: 24178056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta).
    Gordillo FJ; Niell FX; Figueroa FL
    Planta; 2001 May; 213(1):64-70. PubMed ID: 11523657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acquisition of inorganic carbon by four red macroalgae.
    Johnston AM; Maberly SC; Raven JA
    Oecologia; 1992 Dec; 92(3):317-326. PubMed ID: 28312597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of intracellular carbonic anhydrase in inorganic-carbon assimilation by Porphyridium purpureum.
    Dixon GK; Patel BN; Merrett MJ
    Planta; 1987 Dec; 172(4):508-13. PubMed ID: 24226070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoprotection by photoinhibitory and PSII-reaction centre quenching controls growth of Ulva rigida (Chlorophyta) and is a pre-requisite for green tide formation.
    Rautenberger R; Hurd CL
    Planta; 2024 Apr; 259(5):111. PubMed ID: 38578466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of Inorganic Carbon by Ulva lactuca.
    Drechsler Z; Beer S
    Plant Physiol; 1991 Dec; 97(4):1439-44. PubMed ID: 16668569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term effects of increased CO2, nitrate and temperature on photosynthetic activity in Ulva rigida (Chlorophyta) estimated by different pulse amplitude modulated fluorometers and oxygen evolution.
    Figueroa FL; Bonomi-Barufi J; Celis-Plá PSM; Nitschke U; Arenas F; Connan S; Abreu MH; Malta EJ; Conde-Álvarez R; Chow F; Mata MT; Meyerhoff O; Robledo D; Stengel DB
    J Exp Bot; 2021 Feb; 72(2):491-509. PubMed ID: 33064811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.
    Gao G; Liu Y; Li X; Feng Z; Xu J
    PLoS One; 2016; 11(12):e0169040. PubMed ID: 28033367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour. (Phaeophyta).
    Haglund K; Ramazanov Z; Mtolera M; Pedersén M
    Planta; 1992 Aug; 188(1):1-6. PubMed ID: 24178192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in Ulva rigida (Chlorophyta).
    Rautenberger R; Fernández PA; Strittmatter M; Heesch S; Cornwall CE; Hurd CL; Roleda MY
    Ecol Evol; 2015 Feb; 5(4):874-88. PubMed ID: 25750714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels.
    Gordillo FJ; Figueroa FL; Niell FX
    Planta; 2003 Dec; 218(2):315-22. PubMed ID: 12937985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inorganic-carbon transport in some marine eukaryotic microalgae.
    Munoz J; Merrett MJ
    Planta; 1989 Dec; 178(4):450-5. PubMed ID: 24213041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of carbonic anhydrase in photosynthesis of Skeletonema costatum.
    Chen XW; Gao KS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):511-6. PubMed ID: 15627704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the mechanism for HCO (3) (-) use by the inorganic carbon level in Porphyra leucosticta Thur. in Le Jolis (Rhodophyta).
    Mercado JM; Niell FX; Figueroa FL
    Planta; 1997 Mar; 201(3):319-25. PubMed ID: 19343410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport and assimilation of inorganic carbon by Lichina pygmaea under emersed and submersed conditions.
    Raven JA; Johnston AM; Handley LL; McINROY SG
    New Phytol; 1990 Mar; 114(3):407-417. PubMed ID: 33873980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Carbonic Anhydrase Inhibitors on Inorganic Carbon Accumulation by Chlamydomonas reinhardtii.
    Moroney JV; Husic HD; Tolbert NE
    Plant Physiol; 1985 Sep; 79(1):177-83. PubMed ID: 16664365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolved inorganic carbon utilization and the development of extracellular carbonic anhydrase by the marine diatom Phaeodactylum tricornutum.
    Iglesias-Rodriguez MD; Merrett MJ
    New Phytol; 1997 Jan; 135(1):163-168. PubMed ID: 33863155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of inorganic carbon acquisition mechanisms by intact microbial mats of Microcoleus chthonoplastes (Cyanobacteriae, Oscillatoriaceae).
    Carrasco M; Mercado JM; Niell FX
    Physiol Plant; 2008 May; 133(1):49-58. PubMed ID: 18405333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic behaviors in response to intertidal zone and algal mat density in Ulva lactuca (Chlorophyta) along the coast of Nan'ao Island, Shantou, China.
    Jiang H; Gong J; Lou W; Zou D
    Environ Sci Pollut Res Int; 2019 May; 26(13):13346-13353. PubMed ID: 30903473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.