BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24177985)

  • 1. GPU accelerated segmentation and centerline extraction of tubular structures from medical images.
    Smistad E; Elster AC; Lindseth F
    Int J Comput Assist Radiol Surg; 2014 Jul; 9(4):561-75. PubMed ID: 24177985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion.
    Guo X; Xiao R; Zhang T; Chen C; Wang J; Wang Z
    Med Biol Eng Comput; 2020 Apr; 58(4):709-724. PubMed ID: 31955327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Medical image segmentation on GPUs--a comprehensive review.
    Smistad E; Falch TL; Bozorgi M; Elster AC; Lindseth F
    Med Image Anal; 2015 Feb; 20(1):1-18. PubMed ID: 25534282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tubular surface segmentation for extracting anatomical structures from medical imagery.
    Mohan V; Sundaramoorthi G; Tannenbaum A
    IEEE Trans Med Imaging; 2010 Dec; 29(12):1945-58. PubMed ID: 21118754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frangi goes US: multiscale tubular structure detection adapted to 3D ultrasound.
    Waelkens P; Ahmadi SA; Navab N
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):625-33. PubMed ID: 23285604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.
    Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C
    Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction.
    Aylward SR; Bullitt E
    IEEE Trans Med Imaging; 2002 Feb; 21(2):61-75. PubMed ID: 11929106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airway Segmentation and Centerline Extraction from Thoracic CT - Comparison of a New Method to State of the Art Commercialized Methods.
    Reynisson PJ; Scali M; Smistad E; Hofstad EF; Leira HO; Lindseth F; Nagelhus Hernes TA; Amundsen T; Sorger H; Langø T
    PLoS One; 2015; 10(12):e0144282. PubMed ID: 26657513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A monocentric centerline extraction method for ring-like blood vessels.
    Zhao F; Sun F; Hou Y; Chen Y; Chen D; Cao X; Yi H; Wang B; He X; Liang J
    Med Biol Eng Comput; 2018 Apr; 56(4):695-707. PubMed ID: 28864847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automatic restoration framework based on GPU-accelerated collateral filtering in brain MR images.
    Chang HH; Li CY
    BMC Med Imaging; 2019 Jan; 19(1):8. PubMed ID: 30660203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Large Deformation Diffeomorphic Framework for Fast Brain Image Registration via Parallel Computing and Optimization.
    Wu J; Tang X
    Neuroinformatics; 2020 Apr; 18(2):251-266. PubMed ID: 31701342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centerline extraction by neighborhood-statistics thinning for quantitative analysis of corneal nerve fibers.
    Chen Z; Yin X; Lin L; Shi G; Mo J
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35732165
    [No Abstract]   [Full Text] [Related]  

  • 13. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.
    Tokuda J; Plishker W; Torabi M; Olubiyi OI; Zaki G; Tatli S; Silverman SG; Shekher R; Hata N
    Acad Radiol; 2015 Jun; 22(6):722-33. PubMed ID: 25784325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction.
    Chou CY; Chuo YY; Hung Y; Wang W
    Med Phys; 2011 Jul; 38(7):4052-65. PubMed ID: 21859004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate coronary centerline extraction, caliber estimation and catheter detection in angiographies.
    Hernandez-Vela A; Gatta C; Escalera S; Igual L; Martin-Yuste V; Sabate M; Radeva P
    IEEE Trans Inf Technol Biomed; 2012 Nov; 16(6):1332-40. PubMed ID: 23033436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CUDA-based acceleration and BPN-assisted automation of bilateral filtering for brain MR image restoration.
    Chang HH; Chang YN
    Med Phys; 2017 Apr; 44(4):1420-1436. PubMed ID: 28196280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flux driven automatic centerline extraction.
    Bouix S; Siddiqi K; Tannenbaum A
    Med Image Anal; 2005 Jun; 9(3):209-21. PubMed ID: 15854842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast parallel vessel segmentation.
    Satpute N; Naseem R; Palomar R; Zachariadis O; Gómez-Luna J; Cheikh FA; Olivares J
    Comput Methods Programs Biomed; 2020 Aug; 192():105430. PubMed ID: 32171150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Automatic Parameter Decision System of Bilateral Filtering with GPU-Based Acceleration for Brain MR Images.
    Chang HH; Lin YJ; Zhuang AH
    J Digit Imaging; 2019 Feb; 32(1):148-161. PubMed ID: 30088157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.