These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 24178120)
21. QTL and epistatic analyses of heterosis for seed yield and three yield component traits using molecular markers in rapeseed (Brassica napus L.). Li Y; Zhang X; Ma C; Shen J; Chen Q; Wang T; Fu T; Tu J Genetika; 2012 Oct; 48(10):1171-8. PubMed ID: 23270265 [TBL] [Abstract][Full Text] [Related]
22. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Yu SB; Li JX; Xu CG; Tan YF; Gao YJ; Li XH; Zhang Q; Saghai Maroof MA Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9226-31. PubMed ID: 11038567 [TBL] [Abstract][Full Text] [Related]
23. The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Melchinger AE; Utz HF; Piepho HP; Zeng ZB; Schön CC Genetics; 2007 Nov; 177(3):1815-25. PubMed ID: 18039883 [TBL] [Abstract][Full Text] [Related]
24. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design. Wen J; Zhao X; Wu G; Xiang D; Liu Q; Bu SH; Yi C; Song Q; Dunwell JM; Tu J; Zhang T; Zhang YM Sci Rep; 2015 Dec; 5():18376. PubMed ID: 26679476 [TBL] [Abstract][Full Text] [Related]
25. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang L; Wang Y; Cai S; Wang X; Li Y; Abduweli A; Hua J G3 (Bethesda); 2015 Dec; 6(3):499-507. PubMed ID: 26715091 [TBL] [Abstract][Full Text] [Related]
26. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Radoev M; Becker HC; Ecke W Genetics; 2008 Jul; 179(3):1547-58. PubMed ID: 18562665 [TBL] [Abstract][Full Text] [Related]
27. Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Ma L; Wang Y; Ijaz B; Hua J Sci Rep; 2019 Mar; 9(1):3984. PubMed ID: 30850683 [TBL] [Abstract][Full Text] [Related]
29. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559 [TBL] [Abstract][Full Text] [Related]
30. Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. Singh S; Dey SS; Bhatia R; Kumar R; Sharma K; Behera TK PLoS One; 2019; 14(8):e0210772. PubMed ID: 31425498 [TBL] [Abstract][Full Text] [Related]
31. Genetic dissection of main and epistatic effects of QTL based on augmented triple test cross design. Zhang X; Sun C; Zhang Z; Dai Z; Chen Y; Yuan X; Yuan Z; Tang W; Li L; Hu Z PLoS One; 2017; 12(12):e0189054. PubMed ID: 29240818 [TBL] [Abstract][Full Text] [Related]
32. A triple test cross analysis to detect epistatic gene effects in cabbage Jabeen A; Chadha S Saudi J Biol Sci; 2021 Nov; 28(11):6153-6157. PubMed ID: 34759739 [TBL] [Abstract][Full Text] [Related]
33. Identification of heterotic metabolite QTL in Arabidopsis thaliana RIL and IL populations. Lisec J; Steinfath M; Meyer RC; Selbig J; Melchinger AE; Willmitzer L; Altmann T Plant J; 2009 Sep; 59(5):777-88. PubMed ID: 19453458 [TBL] [Abstract][Full Text] [Related]
34. Heterotic quantitative trait loci analysis and genomic prediction of seedling biomass-related traits in maize triple testcross populations. Zhang T; Jiang L; Ruan L; Qian Y; Liang S; Lin F; Lu H; Dai H; Zhao H Plant Methods; 2021 Jul; 17(1):85. PubMed ID: 34330310 [TBL] [Abstract][Full Text] [Related]
35. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Tang J; Yan J; Ma X; Teng W; Wu W; Dai J; Dhillon BS; Melchinger AE; Li J Theor Appl Genet; 2010 Jan; 120(2):333-40. PubMed ID: 19936698 [TBL] [Abstract][Full Text] [Related]
36. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Shang L; Liang Q; Wang Y; Zhao Y; Wang K; Hua J Theor Appl Genet; 2016 Jul; 129(7):1429-1446. PubMed ID: 27138784 [TBL] [Abstract][Full Text] [Related]
37. Genome-wide identification and analysis of heterotic loci in three maize hybrids. Liu H; Wang Q; Chen M; Ding Y; Yang X; Liu J; Li X; Zhou C; Tian Q; Lu Y; Fan D; Shi J; Zhang L; Kang C; Sun M; Li F; Wu Y; Zhang Y; Liu B; Zhao XY; Feng Q; Yang J; Han B; Lai J; Zhang XS; Huang X Plant Biotechnol J; 2020 Jan; 18(1):185-194. PubMed ID: 31199059 [TBL] [Abstract][Full Text] [Related]
38. The efficiency and optimal size of triple test cross designs for detecting epistatic variation. Pooni H; Jinks JL Heredity (Edinb); 1976 Apr; 36(2):215-27. PubMed ID: 1063735 [TBL] [Abstract][Full Text] [Related]
39. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Larièpe A; Mangin B; Jasson S; Combes V; Dumas F; Jamin P; Lariagon C; Jolivot D; Madur D; Fiévet J; Gallais A; Dubreuil P; Charcosset A; Moreau L Genetics; 2012 Feb; 190(2):795-811. PubMed ID: 22135356 [TBL] [Abstract][Full Text] [Related]
40. Delineation of interspecific epistasis on fiber quality traits in Gossypium hirsutum by ADAA analysis of intermated G. barbadense chromosome substitution lines. Saha S; Wu J; Jenkins JN; McCarty JC; Hayes R; Stelly DM Theor Appl Genet; 2011 May; 122(7):1351-61. PubMed ID: 21301803 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]