BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24178135)

  • 1. Characterization of the epidermis from barley primary leaves : I. Isolation of epidermal protoplasts.
    Dietz KJ; Schramm M; Betz M; Busch H; Dürr C; Martinoia E
    Planta; 1992 Jul; 187(4):425-30. PubMed ID: 24178135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of vacuolar polypeptides of barley mesophyll cells by two-dimensional gel electrophoresis and by their affinity to lectins.
    Dietz KJ; Kaiser G; Martinoia E
    Planta; 1988 Dec; 176(3):362-7. PubMed ID: 24220864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the epidermis from barley primary leaves : II. The role of the epidermis in ion compartmentation.
    Dietz KJ; Schramm M; Lang B; Lanzl-Schramm A; Dürr C; Martinoia E
    Planta; 1992 Jul; 187(4):431-7. PubMed ID: 24178136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protoplast preparation without centrifugation: plant regeneration of barley (Hordeum vulgare L.).
    Golds TJ; Babczinsky J; Mordhorst AP; Koop HU
    Plant Cell Rep; 1994 Jan; 13(3-4):188-92. PubMed ID: 24193649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The primary processes of photosystem II in purified guard-cell protoplasts and mesophyll-cell protoplasts from Commelina communis L.
    Hipkins MF; Fitzsimons PJ; Weyers JD
    Planta; 1983 Dec; 159(6):554-60. PubMed ID: 24258332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method.
    Wu FH; Shen SC; Lee LY; Lee SH; Chan MT; Lin CS
    Plant Methods; 2009 Nov; 5():16. PubMed ID: 19930690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley.
    Karley AJ; Leigh RA; Sanders D
    Plant Physiol; 2000 Mar; 122(3):835-44. PubMed ID: 10712547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reappearance of hydrolytic activities and tonoplast proteins in the regenerated vacuole of evacuolated protoplasts.
    Hörtensteiner S; Martinoia E; Amrhein N
    Planta; 1992 Apr; 187(1):113-21. PubMed ID: 24177975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purified isolation of vacuoles from Sedum alfredii leaf-derived protoplasts.
    Gao XY; Liao XC; Wu RL; Liu T; Wang HX; Lu LL
    J Zhejiang Univ Sci B; 2017 Jan.; 18(1):85-88. PubMed ID: 28071001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of Intact and Functional Chloroplasts from Mesophyll and Bundle Sheath Protoplasts of the C(4) Plant Panicum miliaceum.
    Edwards GE
    Plant Physiol; 1979 May; 63(5):821-7. PubMed ID: 16660820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves.
    Mimura T; Dietz KJ; Kaiser W; Schramm MJ; Kaiser G; Heber U
    Planta; 1990 Jan; 180(2):139-46. PubMed ID: 24201937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of Guard Cell Protoplasts from Mechanically Prepared Epidermis of Vicia faba Leaves.
    Kruse T; Tallman G; Zeiger E
    Plant Physiol; 1989 Aug; 90(4):1382-6. PubMed ID: 16666940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of mesophyll protoplasts from mature leaves of soybeans.
    Lin W
    Plant Physiol; 1983 Dec; 73(4):1067-9. PubMed ID: 16663331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation of plant protoplast types by iso-osmotic density gradient centrifugation.
    Harms CT; Potrykus I
    Theor Appl Genet; 1978 Sep; 53(2):57-63. PubMed ID: 24311277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular Localization of 2-(beta-d-Glucosyloxy)-Cinnamic Acids and the Related beta-glucosidase in Leaves of Melilotus alba Desr.
    Oba K; Conn EE; Canut H; Boudet AM
    Plant Physiol; 1981 Dec; 68(6):1359-63. PubMed ID: 16662108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible light-activation of ribulose bisphosphate carboxylase/oxygenase in isolated barley protoplasts and chloroplasts.
    Sicher RC
    Plant Physiol; 1982 Aug; 70(2):366-9. PubMed ID: 16662497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of Ascorbic and Dehydroascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare L. cv Gerbel) Leaves.
    Rautenkranz A; Li L; Machler F; Martinoia E; Oertli JJ
    Plant Physiol; 1994 Sep; 106(1):187-193. PubMed ID: 12232318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular distribution of acetyl-coenzyme A carboxylase in mesophyll cells of barley and sorghum leaves.
    Nikolau BJ; Wurtele ES; Stumpf PK
    Arch Biochem Biophys; 1984 Dec; 235(2):555-61. PubMed ID: 6151378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of indole-3-acetic acid in protoplasts, chloroplasts and a cytoplasmic fraction from barley (Hordeum vulgare L.).
    Sandberg G; Jensen E; Crozier A
    Planta; 1982 Jan; 156(6):541-5. PubMed ID: 24272734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.