These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24178254)

  • 1. Immunoaffinity purification using monoclonal antibodies for the isolation of indole auxins from elongation zones of epicotyls of red-light-grown Alaska peas.
    Ulvskov P; Marcussen J; Seiden P; Olsen CE
    Planta; 1992 Sep; 188(2):182-9. PubMed ID: 24178254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxin Enhancement of mRNAs in Epidermis and Internal Tissues of the Pea Stem and Its Significance for Control of Elongation.
    Dietz A; Kutschera U; Ray PM
    Plant Physiol; 1990 Jun; 93(2):432-8. PubMed ID: 16667484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The involvement of indole-3-acetic acid in the control of stem elongation in dark- and light-grown pea (Pisum sativum) seedlings.
    Sorce C; Picciarelli P; Calistri G; Lercari B; Ceccarelli N
    J Plant Physiol; 2008; 165(5):482-9. PubMed ID: 17706834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnitude and Kinetics of Stem Elongation Induced by Exogenous Indole-3-Acetic Acid in Intact Light-Grown Pea Seedlings.
    Yang T; Law DM; Davies PJ
    Plant Physiol; 1993 Jul; 102(3):717-724. PubMed ID: 12231860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings.
    Nordström AC; Jacobs FA; Eliasson L
    Plant Physiol; 1991 Jul; 96(3):856-61. PubMed ID: 16668265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Internode Length in Pisum sativum (Further Evidence for the Involvement of Indole-3-Acetic Acid).
    McKay MJ; Ross JJ; Lawrence NL; Cramp RE; Beveridge CA; Reid JB
    Plant Physiol; 1994 Dec; 106(4):1521-1526. PubMed ID: 12232426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effect of auxin on in vivo extensibility of cortical cylinder and epidermis in pea internodes.
    Kutschera U; Briggs WR
    Plant Physiol; 1987 Aug; 84(4):1361-6. PubMed ID: 16665611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of Indoleacetic Acid from Tryptophan-C in Cell-free Extracts of Pea Shoot Tips.
    Moore TC; Shaner CA
    Plant Physiol; 1967 Dec; 42(12):1787-96. PubMed ID: 16656720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes.
    Kutschera U; Briggs WR
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2747-51. PubMed ID: 16593829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative indole-3-acetic Acid levels in the slender pea and other pea phenotypes.
    Law DM; Davies PJ
    Plant Physiol; 1990 Aug; 93(4):1539-43. PubMed ID: 16667653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of enzyme activity that conjugates indole-3-acetic acid to aspartate in immature seeds of pea (Pisum sativum).
    Ostrowski M; Jakubowska A
    J Plant Physiol; 2008; 165(5):564-9. PubMed ID: 17920159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Binding of indole acetic acid and 2-methyl-4-chlorophenoxy acetic acid to fractions from epicotyles and roots of Pisum sativum L].
    Döllstädt R; Hirschberg K; Winkler E; Hübner G
    Planta; 1976 Jan; 130(2):105-11. PubMed ID: 24424585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species.
    Hladík P; Petřík I; Žukauskaitė A; Novák O; Pěnčík A
    Front Plant Sci; 2023; 14():1217421. PubMed ID: 37534287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of auxin on the incorporation of [(3)H]thymidine into the DNA of pea epicotyls.
    Sherwin JE; Gordon SA
    Planta; 1974 Mar; 116(1):65-72. PubMed ID: 24458993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis.
    Rashotte AM; Poupart J; Waddell CS; Muday GK
    Plant Physiol; 2003 Oct; 133(2):761-72. PubMed ID: 14526119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark- and light-grown Pisum seedlings.
    Behringer FJ; Davies PJ
    Planta; 1992 Aug; 188(1):85-92. PubMed ID: 24178203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of Indole-3-Acetic Acid by the Pine Ectomycorrhizal Fungus Pisolithus tinctorius.
    Frankenberger WT; Poth M
    Appl Environ Microbiol; 1987 Dec; 53(12):2908-13. PubMed ID: 16347506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs.
    Schneider EA; Kazakoff CW; Wightman F
    Planta; 1985 Aug; 165(2):232-41. PubMed ID: 24241048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [On the influence of kinetin and indole acetic acid on the sprouting of the buds of Pisum sativum].
    Denizci R
    Planta; 1966 Jun; 68(2):141-56. PubMed ID: 24557738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls.
    Suttle JC
    Plant Physiol; 1988 Nov; 88(3):795-9. PubMed ID: 16666386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.