These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24178351)

  • 1. Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper.
    Karthikeyan AS; Sarma KS; Veluthambi K
    Plant Cell Rep; 1996 Jan; 15(5):328-31. PubMed ID: 24178351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens.
    Saini R; Sonia ; Jaiwal PK
    Plant Cell Rep; 2003 Jun; 21(9):851-9. PubMed ID: 12789502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek) - a recalcitrant grain legume.
    Jaiwal PK; Kumari R; Ignacimuthu S; Potrykus I; Sautter C
    Plant Sci; 2001 Jul; 161(2):239-247. PubMed ID: 11448754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures.
    Saini R; Jaiwal PK
    Plant Cell Rep; 2005 Jun; 24(3):164-71. PubMed ID: 15815929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium- mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper).
    Sainger M; Chaudhary D; Dahiya S; Jaiwal R; Jaiwal PK
    Physiol Mol Biol Plants; 2015 Oct; 21(4):505-17. PubMed ID: 26600677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of blackgram (Vigna mungo (L.) Hepper) by barley chitinase and ribosome-inactivating protein genes towards improving resistance to Corynespora leaf spot fungal disease.
    Chopra R; Saini R
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2791-800. PubMed ID: 25227687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and differentiation of transgenic callus regulated by phytohormones and antibiotics in transformation of loblolly pine.
    Tang W; Luo XY; Samuels V
    Yi Chuan Xue Bao; 2002 Feb; 29(2):166-74. PubMed ID: 11902001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium-mediated transformation and plant regeneration from hypocotyl segments of Japanese persimmon (Diospyros kaki Thunb).
    Nakamura Y; Kobayashi S; Nakajima I
    Plant Cell Rep; 1998 Apr; 17(6-7):435-440. PubMed ID: 30736615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton.
    Zhang T; Wu SJ
    Methods Mol Biol; 2012; 847():245-53. PubMed ID: 22351014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens.
    Akutsu M; Ishizaki T; Sato H
    Plant Cell Rep; 2004 Mar; 22(8):561-8. PubMed ID: 14615906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of pickling cucumber with chitinase-encoding genes using Agrobacterium tumefaciens.
    Raharjo SH; Hernandez MO; Zhang YY; Punja ZK
    Plant Cell Rep; 1996 Apr; 15(8):591-6. PubMed ID: 24178524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium tumefaciens-mediated transformation of eggplant (Solanum melongena L.) using root explants.
    Franklin G; Lakshmi Sita G
    Plant Cell Rep; 2003 Feb; 21(6):549-54. PubMed ID: 12789429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of the forage legume Trifolium repens L. using binary Agrobacterium vectors.
    White DW; Greenwood D
    Plant Mol Biol; 1987 Nov; 8(6):461-9. PubMed ID: 24301308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L.
    Li Y; Gao Z; Piao C; Lu K; Wang Z; Cui ML
    Appl Biochem Biotechnol; 2014 Feb; 172(4):1807-17. PubMed ID: 24272685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.).
    Jiang L; Maoka T; Komori S; Fukamachi H; Kato H; Ogawa K
    Shi Yan Sheng Wu Xue Bao; 2004 Jun; 37(3):189-98. PubMed ID: 15323420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene.
    Jayashree R; Rekha K; Venkatachalam P; Uratsu SL; Dandekar AM; Kumari Jayasree P; Kala RG; Priya P; Sushma Kumari S; Sobha S; Ashokan MP; Sethuraj MR; Thulaseedharan A
    Plant Cell Rep; 2003 Oct; 22(3):201-9. PubMed ID: 14551734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda.
    Stevens ME; Pijut PM
    Plant Cell Rep; 2014 Jun; 33(6):861-70. PubMed ID: 24493252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens.
    Choi PS; Soh WY; Kim YS; Yoo OJ; Liu JR
    Plant Cell Rep; 1994 Mar; 13(6):344-8. PubMed ID: 24193834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of Tobacco, Tomato, Potato, and Arabidopsis thaliana Using a Binary Ti Vector System.
    An G; Watson BD; Chiang CC
    Plant Physiol; 1986 May; 81(1):301-5. PubMed ID: 16664795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation.
    Hatanaka T; Choi YE; Kusano T; Sano H
    Plant Cell Rep; 1999 Dec; 19(2):106-110. PubMed ID: 30754734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.