BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24178438)

  • 1. Homologous SV40 RNA trans-splicing: a new mechanism for diversification of viral sequences and phenotypes.
    Eul J; Patzel V
    RNA Biol; 2013 Nov; 10(11):1689-99. PubMed ID: 24178438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trans-splicing and alternative-tandem-cis-splicing: two ways by which mammalian cells generate a truncated SV40 T-antigen.
    Eul J; Graessmann M; Graessmann A
    Nucleic Acids Res; 1996 May; 24(9):1653-61. PubMed ID: 8649982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?
    Poddar S; Eul J; Patzel V
    Comput Struct Biotechnol J; 2014 Jun; 10(16):51-7. PubMed ID: 25210599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression.
    Exline CM; Feng Z; Stoltzfus CM
    J Virol; 2008 Apr; 82(8):3921-31. PubMed ID: 18272582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro synthesized SV40 cRNA is trans-spliced after microinjection into the nuclei of mammalian cells.
    Eul J; Graessmann M; Graessmann A
    FEBS Lett; 1996 Sep; 394(2):227-32. PubMed ID: 8843169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent expression of the transforming amino-terminal domain of SV40 large I antigen from an alternatively spliced third SV40 early mRNA.
    Zerrahn J; Knippschild U; Winkler T; Deppert W
    EMBO J; 1993 Dec; 12(12):4739-46. PubMed ID: 8223482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splicing of SV40 early pre-mRNA in vitro.
    van Santen VL; Spritz RA
    Nucleic Acids Res; 1986 Dec; 14(24):9911-26. PubMed ID: 3027668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sequence motif in the simian virus 40 (SV40) early core promoter affects alternative splicing of transcribed mRNA.
    Gendra E; Colgan DF; Meany B; Konarska MM
    J Biol Chem; 2007 Apr; 282(16):11648-57. PubMed ID: 17331949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JC virus T' proteins encoded by alternatively spliced early mRNAs enhance T antigen-mediated viral DNA replication in human cells.
    Prins C; Frisque RJ
    J Neurovirol; 2001 Jun; 7(3):250-64. PubMed ID: 11517399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the polypyrimidine stretch at the SV40 early pre-mRNA 3' splice site in alternative splicing.
    Fu XY; Ge H; Manley JL
    EMBO J; 1988 Mar; 7(3):809-17. PubMed ID: 2840286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of a strong F9 cryptic 5'ss by intrinsic elements and by combination of tailored U1snRNAs with antisense oligonucleotides.
    Balestra D; Barbon E; Scalet D; Cavallari N; Perrone D; Zanibellato S; Bernardi F; Pinotti M
    Hum Mol Genet; 2015 Sep; 24(17):4809-16. PubMed ID: 26063760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A suboptimal 5' splice site downstream of HIV-1 splice site A1 is required for unspliced viral mRNA accumulation and efficient virus replication.
    Madsen JM; Stoltzfus CM
    Retrovirology; 2006 Feb; 3():10. PubMed ID: 16457729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence for RNA trans-splicing in mammalian cells.
    Eul J; Graessmann M; Graessmann A
    EMBO J; 1995 Jul; 14(13):3226-35. PubMed ID: 7542587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput analysis revealed mutations' diverging effects on
    Souček P; Réblová K; Kramárek M; Radová L; Grymová T; Hujová P; Kováčová T; Lexa M; Grodecká L; Freiberger T
    RNA Biol; 2019 Oct; 16(10):1364-1376. PubMed ID: 31213135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic differences between authentic and cryptic 5' splice sites.
    Roca X; Sachidanandam R; Krainer AR
    Nucleic Acids Res; 2003 Nov; 31(21):6321-33. PubMed ID: 14576320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simian virus 40 and polyomavirus large tumor antigens have different requirements for high-affinity sequence-specific DNA binding.
    Scheller A; Prives C
    J Virol; 1985 May; 54(2):532-45. PubMed ID: 2985816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Vif mRNA splicing by human immunodeficiency virus type 1 requires 5' splice site D2 and an exonic splicing enhancer to counteract cellular restriction factor APOBEC3G.
    Mandal D; Exline CM; Feng Z; Stoltzfus CM
    J Virol; 2009 Jun; 83(12):6067-78. PubMed ID: 19357165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive in silico analysis of NF1 splicing defects uncovers determinants for splicing outcome upon 5' splice-site disruption.
    Wimmer K; Roca X; Beiglböck H; Callens T; Etzler J; Rao AR; Krainer AR; Fonatsch C; Messiaen L
    Hum Mutat; 2007 Jun; 28(6):599-612. PubMed ID: 17311297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large T antigens of simian virus 40 and polyomavirus efficiently establish primary fibroblasts.
    Jat PS; Sharp PA
    J Virol; 1986 Sep; 59(3):746-50. PubMed ID: 3016337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of a small C-terminal region of JCV and SV40 large T antigens has differential effects on transformation.
    Seneca NTM; Sáenz Robles MT; Pipas JM
    Virology; 2014 Nov; 468-470():47-56. PubMed ID: 25129438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.