These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24178847)

  • 21. Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis.
    Ritzmann RE; Ridgel AL; Pollack AJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):341-60. PubMed ID: 18180927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Locomotion control of hybrid cockroach robots.
    Sanchez CJ; Chiu CW; Zhou Y; González JM; Vinson SB; Liang H
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25740855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical mechanism for transitions in phase and frequency of arm and leg swing during walking.
    Kubo M; Wagenaar RC; Saltzman E; Holt KG
    Biol Cybern; 2004 Aug; 91(2):91-8. PubMed ID: 15351887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback.
    Kukillaya R; Proctor J; Holmes P
    Chaos; 2009 Jun; 19(2):026107. PubMed ID: 19566267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leg design in hexapedal runners.
    Full RJ; Blickhan R; Ting LH
    J Exp Biol; 1991 Jul; 158():369-90. PubMed ID: 1919412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics.
    Watson JT; Ritzmann RE; Zill SN; Pollack AJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Feb; 188(1):39-53. PubMed ID: 11935229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
    Rosenbaum P; Wosnitza A; Büschges A; Gruhn M
    J Neurophysiol; 2010 Sep; 104(3):1681-95. PubMed ID: 20668273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback.
    Proctor J; Kukillaya RP; Holmes P
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5087-104. PubMed ID: 20921014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
    von Twickel A; Büschges A; Pasemann F
    Biol Cybern; 2011 Feb; 104(1-2):95-119. PubMed ID: 21327828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered.
    Noah JA; Quimby L; Frazier SF; Zill SN
    J Comp Physiol A; 2001 Dec; 187(10):769-84. PubMed ID: 11800034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Certain functional connections of neurons control the walking of the cockroach Periplaneta americana].
    Fedin AN
    Zh Evol Biokhim Fiziol; 1980; 16(5):454-60. PubMed ID: 6252735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running.
    Watson JT; Ritzmann RE
    J Comp Physiol A; 1998 Jan; 182(1):23-33. PubMed ID: 9447711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain.
    Sponberg S; Full RJ
    J Exp Biol; 2008 Feb; 211(Pt 3):433-46. PubMed ID: 18203999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Closing the loop in legged neuromechanics: an open-source computer vision controlled treadmill.
    Spence AJ; Nicholson-Thomas G; Lampe R
    J Neurosci Methods; 2013 May; 215(2):164-9. PubMed ID: 23541994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The long-acting walking control of a cockroach bio-bot for vision-aided pipeline navigation.
    Ma S; Liu S; Yang S; Chen Y; Li Y; Li B
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of the neural mechanism underlying the terrestrial turning of the salamander.
    Liu Q; Zhang Y; Wang J; Yang H; Hong L
    Biol Cybern; 2020 Jun; 114(3):317-336. PubMed ID: 32107623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement.
    Watson JT; Ritzmann RE; Pollack AJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Feb; 188(1):55-69. PubMed ID: 11935230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neuromechanical model explaining forward and backward stepping in the stick insect.
    Tóth TI; Knops S; Daun-Gruhn S
    J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.