BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24178892)

  • 1. Trigeminal intersubnuclear neurons: morphometry and input-dependent structural plasticity in adult rats.
    Martin YB; Negredo P; Villacorta-Atienza JA; Avendaño C
    J Comp Neurol; 2014 May; 522(7):1597-617. PubMed ID: 24178892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trigeminothalamic barrelette neurons: natural structural side asymmetries and sensory input-dependent plasticity in adult rats.
    Negredo P; Martin YB; Lagares A; Castro J; Villacorta JA; Avendaño C
    Neuroscience; 2009 Nov; 163(4):1242-54. PubMed ID: 19664693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experience-dependent plasticity in early stations of sensory processing in mature brains: effects of environmental enrichment on dendrite measures in trigeminal nuclei.
    Martin YB; Negredo P; Avendaño C
    Brain Struct Funct; 2022 Apr; 227(3):865-879. PubMed ID: 34807302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo.
    Lendvai B; Stern EA; Chen B; Svoboda K
    Nature; 2000 Apr; 404(6780):876-81. PubMed ID: 10786794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral deafferentation-driven functional somatosensory map shifts are associated with local, not large-scale dendritic structural plasticity.
    Schubert V; Lebrecht D; Holtmaat A
    J Neurosci; 2013 May; 33(22):9474-87. PubMed ID: 23719814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of the neuronal plasticity along the neuraxis of the vibrissal sensory system of adult rat following unilateral infraorbital nerve damage and subsequent regeneration.
    Kis Z; Farkas T; Rábl K; Kis E; Kóródi K; Simon L; Marusin I; Rojik I; Toldi J
    Exp Brain Res; 1999 May; 126(2):259-69. PubMed ID: 10369148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal deafferentation does not alter membrane properties of trigeminal nucleus principalis neurons.
    Lo FS; Erzurumlu RS
    J Neurophysiol; 2001 Mar; 85(3):1088-96. PubMed ID: 11247979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the axon terminals of primary afferents from a single vibrissa in the rat trigeminal nuclei after active touch deprivation or exposure to an enriched environment.
    Fernández-Montoya J; Martin YB; Negredo P; Avendaño C
    Brain Struct Funct; 2018 Jan; 223(1):47-61. PubMed ID: 28702736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function relationships in rat brainstem subnucleus interpolaris: XII. neonatal deafferentation effects on cell morphology.
    Jacquin MF; Renehan WE
    Somatosens Mot Res; 1995; 12(3-4):209-33. PubMed ID: 8834299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Component Structural Plasticity Mediated by αCaMKII Autophosphorylation on Basal Dendrites of Cortical Layer 2/3 Neurones.
    Seaton G; Hodges G; de Haan A; Grewal A; Pandey A; Kasai H; Fox K
    J Neurosci; 2020 Mar; 40(11):2228-2245. PubMed ID: 32001612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation.
    Miquelajauregui A; Kribakaran S; Mostany R; Badaloni A; Consalez GG; Portera-Cailliau C
    J Neurosci; 2015 May; 35(18):7287-94. PubMed ID: 25948276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary afferent plasticity following partial denervation of the trigeminal brainstem nuclear complex in the postnatal rat.
    Renehan WE; Crissman RS; Jacquin MF
    J Neurosci; 1994 Feb; 14(2):721-39. PubMed ID: 7507983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat.
    Veinante P; Deschênes M
    J Neurosci; 1999 Jun; 19(12):5085-95. PubMed ID: 10366641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat.
    Vees AM; Micheva KD; Beaulieu C; Descarries L
    J Comp Neurol; 1998 Oct; 400(1):110-24. PubMed ID: 9762870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of trigeminal mesencephalic nucleus in kinetic encoding of whisker movements.
    Mameli O; Stanzani S; Russo A; Pellitteri R; Manca P; De Riu PL; Caria MA
    Brain Res Bull; 2014 Mar; 102():37-45. PubMed ID: 24518654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent Wnt 7 dendritic targeting in hippocampal neurons: plasticity- and tagging-related retrograde signaling mechanism?
    Tabatadze N; McGonigal R; Neve RL; Routtenberg A
    Hippocampus; 2014 Apr; 24(4):455-65. PubMed ID: 24375790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid adult experience-dependent anatomical plasticity in layer IV of primary somatosensory cortex.
    Chau LS; Akhtar O; Mohan V; Kondilis A; Galvez R
    Brain Res; 2014 Jan; 1543():93-100. PubMed ID: 24183785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whisker plucking alters responses of rat trigeminal ganglion neurons.
    Shetty P; Shoykhet M; Simons DJ
    Somatosens Mot Res; 2003; 20(3-4):233-8. PubMed ID: 14675962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of neonatal axoplasmic transport attenuation on the response properties of vibrissae-sensitive neurons in the trigeminal principal sensory nucleus of the rat.
    Chiaia NL; Zhang S; Crissman RS; Rhoades RW
    Somatosens Mot Res; 2000; 17(3):273-83. PubMed ID: 10994597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of terminals and synapses in laminae I and II of the rat medullary dorsal horn after infraorbital nerve transection at birth.
    Golden JP; Demaro JA; Robinson PL; Jacquin MF
    J Comp Neurol; 1997 Jul; 383(3):339-48. PubMed ID: 9205045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.