These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24179064)

  • 1. Effect of calcium phosphate-based fillers on the structure and bonding strength of novel gelatin-alginate bioadhesives.
    Cohen B; Panker M; Zuckerman E; Foox M; Zilberman M
    J Biomater Appl; 2014 May; 28(9):1366-75. PubMed ID: 24179064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelatin-alginate novel tissue adhesives and their formulation-strength effects.
    Cohen B; Pinkas O; Foox M; Zilberman M
    Acta Biomater; 2013 Nov; 9(11):9004-11. PubMed ID: 23851174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of hemostatic agents on properties of gelatin-alginate soft tissue adhesives.
    Pinkas O; Zilberman M
    J Biomater Sci Polym Ed; 2014; 25(6):555-73. PubMed ID: 24499482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel gelatin/alginate soft tissue adhesives loaded with drugs for pain management: structure and properties.
    Cohen B; Shefy-Peleg A; Zilberman M
    J Biomater Sci Polym Ed; 2014; 25(3):224-40. PubMed ID: 24156311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism.
    Pinkas O; Goder D; Noyvirt R; Peleg S; Kahlon M; Zilberman M
    Acta Biomater; 2017 Mar; 51():125-137. PubMed ID: 28110072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration.
    Nguyen TP; Lee BT
    J Biomater Appl; 2012 Sep; 27(3):311-21. PubMed ID: 21680610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive.
    Yuan L; Wu Y; Fang J; Wei X; Gu Q; El-Hamshary H; Al-Deyab SS; Morsi Y; Mo X
    Artif Cells Nanomed Biotechnol; 2017 Feb; 45(1):76-83. PubMed ID: 26855181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phloroglucinol-based biomimetic adhesives for medical applications.
    Bitton R; Josef E; Shimshelashvili I; Shapira K; Seliktar D; Bianco-Peled H
    Acta Biomater; 2009 Jun; 5(5):1582-7. PubMed ID: 19272847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.
    Linh NT; Paul K; Kim B; Lee BT
    J Biomater Appl; 2016 Nov; 31(5):661-673. PubMed ID: 27604088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration.
    Cardoso DA; van den Beucken JJ; Both LL; Bender J; Jansen JA; Leeuwenburgh SC
    J Biomed Mater Res A; 2014 Mar; 102(3):808-17. PubMed ID: 23589413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of an electrodeposited calcium phosphate coating associated with a calcium alginate matrix.
    Hurteaux R; Benhayoune H; Edwards-Levy F; Bouthors S; Balossier G; Laurent-Maquin D
    J Mater Sci Mater Med; 2005 Jan; 16(1):9-13. PubMed ID: 15754138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.
    Tonsomboon K; Oyen ML
    J Mech Behav Biomed Mater; 2013 May; 21():185-94. PubMed ID: 23566770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration.
    Park JH; Lee EJ; Knowles JC; Kim HW
    J Biomater Appl; 2014 Mar; 28(7):1079-84. PubMed ID: 23836845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium phosphate-alginate microspheres as enzyme delivery matrices.
    Ribeiro CC; Barrias CC; Barbosa MA
    Biomaterials; 2004 Aug; 25(18):4363-73. PubMed ID: 15046927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of strontium and gelatin on the reactivity of alpha-tricalcium phosphate.
    Boanini E; Panzavolta S; Rubini K; Gandolfi M; Bigi A
    Acta Biomater; 2010 Mar; 6(3):936-42. PubMed ID: 19819353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study.
    Sung HW; Huang DM; Chang WH; Huang RN; Hsu JC
    J Biomed Mater Res; 1999 Sep; 46(4):520-30. PubMed ID: 10398013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications.
    Ribeiro CC; Barrias CC; Barbosa MA
    J Mater Sci Mater Med; 2006 May; 17(5):455-63. PubMed ID: 16688586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo.
    Qiao P; Wang J; Xie Q; Li F; Dong L; Xu T
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4633-9. PubMed ID: 24094170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks.
    Xie M; Olderøy MØ; Andreassen JP; Selbach SM; Strand BL; Sikorski P
    Acta Biomater; 2010 Sep; 6(9):3665-75. PubMed ID: 20359556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous surface modified bioactive bone cement for enhanced bone bonding.
    He Q; Chen H; Huang L; Dong J; Guo D; Mao M; Kong L; Li Y; Wu Z; Lei W
    PLoS One; 2012; 7(8):e42525. PubMed ID: 22905143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.