BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2417997)

  • 1. The histochemical demonstration of fructose diphosphate aldolase activity using a semipermeable membrane technique.
    Meijer AE
    Histochem J; 1985 Nov; 17(11):1271-5. PubMed ID: 2417997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histochemical technique for the demonstration of phosphofructokinase activity in heart and skeletal muscles.
    Meijer AE; Stegehuis F
    Histochemistry; 1980; 66(1):75-81. PubMed ID: 6446532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histochemical technique for the demonstration of pyruvate kinase activity.
    Meijer AE; van den Hoven R
    Histochemistry; 1988; 88(3-6):501-4. PubMed ID: 3366651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. VI. D-glucose 6-phosphate isomerase and phosphoglucomutase.
    de Vries GP; Meijer AE
    Histochemistry; 1976 Nov; 50(1):1-8. PubMed ID: 1002568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semipermeable membranes for improving the histochemical demonstration of enzyme activities in tissue sections. V. Isocitrate: NADP+ oxidoreductase (decarboxylating) and malate: NADP+ oxidoreductase (decarboxylating).
    Meijer AE; de Vries GP
    Histochemistry; 1975 Jun; 43(3):225-36. PubMed ID: 238922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of creatine kinase in myocardial and skeletal muscle using the semipermeable membrane technique.
    Frederiks WM; Marx F; Strootman F
    J Mol Cell Cardiol; 1987 Mar; 19(3):311-7. PubMed ID: 3599085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyacrylamide gel technique for the histochemical demonstration of soluble enzymes.
    Ruitenbeek W; Scholte HR
    Histochemistry; 1976-1977; 50(2):81-9. PubMed ID: 1052094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative cytochemical measurement of glyceraldehyde 3-phosphate dehydrogenase activity.
    Henderson B
    Histochemistry; 1976 Aug; 48(3):191-204. PubMed ID: 8412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative effect of fructose bisphosphate and glyceraldehyde-3-phosphate dehydrogenase on aldolase action.
    Neuzil J; Danielson H; Welch GR; Ovádi J
    Biochim Biophys Acta; 1990 Mar; 1037(3):307-12. PubMed ID: 2106914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The aldolase-substrate intermediates and their interaction with glyceraldehyde-3-phosphate dehydrogenase in a reconstructed glycolytic system.
    Grazi E; Trombetta G
    Eur J Biochem; 1980 Jun; 107(2):369-73. PubMed ID: 7398648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic evidence for interaction between aldolase and D-glyceraldehyde-3-phosphate dehydrogenase.
    Ovádi J; Keleti T
    Eur J Biochem; 1978 Apr; 85(1):157-61. PubMed ID: 205415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration of activated intermediates of the fructose-1,6-bisphosphate aldolase and triosephosphate isomerase reactions.
    Iyengar R; Rose IA
    Biochemistry; 1981 Mar; 20(5):1223-9. PubMed ID: 7013790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose 1,6-diphosphate aldolase from rabbit muscle. Effect of pH on the rate of formation and on the equilibrium concentration of the carbanion intermediate.
    Grazi E
    Biochem J; 1975 Oct; 151(1):167-72. PubMed ID: 2160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of glyceraldehyde-3-phosphate transfer from aldolase to glyceraldehyde-3-phosphate dehydrogenase.
    Kvassman J; Pettersson G; Ryde-Pettersson U
    Eur J Biochem; 1988 Mar; 172(2):427-31. PubMed ID: 3350006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple approach to identify the mechanism of intermediate transfer: enzyme system related to triose phosphate metabolism.
    Orosz F; Ovádi J
    Biochim Biophys Acta; 1987 Sep; 915(1):53-9. PubMed ID: 3620481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic interactions of enzymes involved in triosephosphate metabolism.
    Orosz F; Ovádi J
    Eur J Biochem; 1986 Nov; 160(3):615-9. PubMed ID: 3780725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disequilibrium in the triose phosphate isomerase system in rat liver.
    Veech RL; Raijman L; Dalziel K; Krebs HA
    Biochem J; 1969 Dec; 115(4):837-42. PubMed ID: 5357024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The active chemical state of D-glyceraldehyde 3-phosphate in its reactions with D-glyceraldehyde 3-phosphate dehydrogenase, aldolase and triose phosphate isomerase.
    Trentham DR; McMurray CH; Pogson CI
    Biochem J; 1969 Aug; 114(1):19-24. PubMed ID: 4309306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of phosphonomethyl analog of dihydroxyacetone phosphate with rabbit muscle aldolase.
    Page P; Blonski C; Périé J
    Biochim Biophys Acta; 1998 Jul; 1386(1):59-64. PubMed ID: 9675245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some evidence in favour of the partnership between rabbit muscle aldolase and glyceraldehyde 3-phosphate dehydrogenase in the consecutive reactions.
    Chumachenko YV
    Ukr Biokhim Zh (1978); 1994; 66(6):52-7. PubMed ID: 7785086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.