These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2418022)
1. Catalytic flexibility of glycosylases. The hydration of maltal by beta-amylase to form 2-deoxymaltose. Hehre EJ; Kitahata S; Brewer CF J Biol Chem; 1986 Feb; 261(5):2147-53. PubMed ID: 2418022 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase. Kitahata S; Chiba S; Brewer CF; Hehre EJ Biochemistry; 1991 Jul; 30(27):6769-75. PubMed ID: 1829637 [TBL] [Abstract][Full Text] [Related]
3. Maltal binding mechanism and a role of the mobile loop of soybean beta-amylase. Kunikata T; Nishimura S; Nitta Y Biosci Biotechnol Biochem; 1996 Jul; 60(7):1104-8. PubMed ID: 8782404 [TBL] [Abstract][Full Text] [Related]
4. Scope and mechanism of carbohydrase action: stereospecific hydration of D-glucal catalyzed by alpha- and beta-glucosidase. Hehre EJ; Genghof DS; Sternlicht H; Brewer CF Biochemistry; 1977 May; 16(9):1780-7. PubMed ID: 870025 [TBL] [Abstract][Full Text] [Related]
5. Maltal Binding Mechanism and a Role of the Mobile Loop of Soybean β-Amylase. Toshiko K; Shigenori N; Yasunori N Biosci Biotechnol Biochem; 1996 Jan; 60(7):1104-8. PubMed ID: 27299713 [TBL] [Abstract][Full Text] [Related]
6. Scope and mechanism of carbohydrase action. Stereocomplementary hydrolytic and glucosyl-transferring actions of glucoamylase and glucodextranase with alpha- and beta-D-glucosyl fluoride. Kitahata S; Brewer CF; Genghof DS; Sawai T; Hehre EJ J Biol Chem; 1981 Jun; 256(12):6017-26. PubMed ID: 6787047 [TBL] [Abstract][Full Text] [Related]
7. The predominantly nonhydrolytic action of alpha amylases on alpha-maltosyl fluoride. Okada G; Genghof DS; Hehre EJ Carbohydr Res; 1979 Jun; 71():287-98. PubMed ID: 313247 [TBL] [Abstract][Full Text] [Related]
8. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis. Mikami B; Degano M; Hehre EJ; Sacchettini JC Biochemistry; 1994 Jun; 33(25):7779-87. PubMed ID: 8011643 [TBL] [Abstract][Full Text] [Related]
9. Hydration of cellobial by exo- and endo-type cellulases: evidence for catalytic flexibility of glycosylases. Kanda T; Brewer CF; Okada G; Hehre EJ Biochemistry; 1986 Mar; 25(5):1159-65. PubMed ID: 3964662 [TBL] [Abstract][Full Text] [Related]
10. Scope and mechanism of carbohydrase action. Hydrolytic and nonhydrolytic actions of beta-amylase on alpha- and beta-maltosyl fluoride. Hehre EJ; Brewer CF; Genghof DS J Biol Chem; 1979 Jul; 254(13):5942-50. PubMed ID: 156183 [No Abstract] [Full Text] [Related]
11. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase. Suetsugu N; Takeo K; Sanai Y; Kuge T J Biochem; 1978 Feb; 83(2):473-8. PubMed ID: 147271 [TBL] [Abstract][Full Text] [Related]
12. Stereochemistry of D-galactal and D-galacto-octenitol hydration by coffee bean alpha-galactosidase: insight into catalytic functioning of the enzyme. Weiser W; Lehmann J; Matsui H; Brewer CF; Hehre EJ Arch Biochem Biophys; 1992 Feb; 292(2):493-8. PubMed ID: 1309973 [TBL] [Abstract][Full Text] [Related]
13. Studies on the substrate specificity of alpha- and beta-amylase of Entamoeba histolytica. Werries E; Müller F Mol Biochem Parasitol; 1986 Feb; 18(2):211-21. PubMed ID: 2421162 [TBL] [Abstract][Full Text] [Related]
14. Factors determining steric course of enzymic glycosylation reactions: glycosyl transfer products formed from 2,6-anhydro-1-deoxy-D-gluco-hept-1-enitol by alpha-glucosidases and an inverting exo-alpha-glucanase. Schlesselmann P; Fritz H; Lehmann J; Uchiyama T; Brewer CF; Hehre EJ Biochemistry; 1982 Dec; 21(25):6606-14. PubMed ID: 6758847 [TBL] [Abstract][Full Text] [Related]
15. Interaction of soybean beta-amylase with glucose. Nomura K; Mikami B; Morita Y J Biochem; 1986 Nov; 100(5):1175-83. PubMed ID: 2434466 [TBL] [Abstract][Full Text] [Related]
16. Unexpected mode of action of sweet potato β-amylase on maltooligomer substrates. Fazekas E; Szabó K; Kandra L; Gyémánt G Biochim Biophys Acta; 2013 Oct; 1834(10):1976-81. PubMed ID: 23831155 [TBL] [Abstract][Full Text] [Related]
17. Studies on the substrate specificity of Taka-amylase A1. XIV. Preparation of 6-deoxy-6-halogenomaltotrioses and their hydrolysis by Taka-amylase A. Omichi K; Matsushima Y J Biochem; 1978 Oct; 84(4):835-41. PubMed ID: 309468 [TBL] [Abstract][Full Text] [Related]
18. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides. Sierks MR; Svensson B Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668 [TBL] [Abstract][Full Text] [Related]
19. Substrate-induced activation of maltose phosphorylase: interaction with the anomeric hydroxyl group of alpha-maltose and alpha-D-glucose controls the enzyme's glucosyltransferase activity. Tsumuraya Y; Brewer CF; Hehre EJ Arch Biochem Biophys; 1990 Aug; 281(1):58-65. PubMed ID: 2143366 [TBL] [Abstract][Full Text] [Related]
20. The roles of Glu186 and Glu380 in the catalytic reaction of soybean beta-amylase. Kang YN; Adachi M; Utsumi S; Mikami B J Mol Biol; 2004 Jun; 339(5):1129-40. PubMed ID: 15178253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]