These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24180325)

  • 1. Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons.
    Sarkar D; Mandal M; Mandal K
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11995-2004. PubMed ID: 24180325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sacrificial templating synthesis of hematite nanochains from [Fe18S25](TETAH)14 nanoribbons: their magnetic, electrochemical, and photocatalytic properties.
    Zhou YX; Yao HB; Yao WT; Zhu Z; Yu SH
    Chemistry; 2012 Apr; 18(16):5073-9. PubMed ID: 22407781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.
    Hao H; Sun D; Xu Y; Liu P; Zhang G; Sun Y; Gao D
    J Colloid Interface Sci; 2016 Jan; 462():315-24. PubMed ID: 26476200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors.
    Wu C; Yin P; Zhu X; OuYang C; Xie Y
    J Phys Chem B; 2006 Sep; 110(36):17806-12. PubMed ID: 16956266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing.
    Gou X; Wang G; Kong X; Wexler D; Horvat J; Yang J; Park J
    Chemistry; 2008; 14(19):5996-6002. PubMed ID: 18435446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties.
    Yu Q; Huang H; Chen R; Wang P; Yang H; Gao M; Peng X; Ye Z
    Nanoscale; 2012 Apr; 4(8):2613-20. PubMed ID: 22426955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the electron collection efficiency in porous hematite using a thin iron oxide underlayer: towards efficient all-iron based photoelectrodes.
    Dalle Carbonare N; Carli S; Argazzi R; Orlandi M; Bazzanella N; Miotello A; Caramori S; Bignozzi CA
    Phys Chem Chem Phys; 2015 Nov; 17(44):29661-70. PubMed ID: 26477966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage.
    Chen D; Quan H; Liang J; Guo L
    Nanoscale; 2013 Oct; 5(20):9684-9. PubMed ID: 23999932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single-source hydrothermal route to synthesize porous hematite particles and their photocatalytic activity.
    He X; Zhu Y
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7121-5. PubMed ID: 23035442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.
    Zandi O; Hamann TW
    J Phys Chem Lett; 2014 May; 5(9):1522-6. PubMed ID: 26270090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing.
    Deng Z; Cao D; He J; Lin S; Lindsay SM; Liu Y
    ACS Nano; 2012 Jul; 6(7):6197-207. PubMed ID: 22738287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO₂ sorbents with scaffold-like Ca-Al layered double hydroxides as precursors for CO₂ capture at high temperatures.
    Chang PH; Lee TJ; Chang YP; Chen SY
    ChemSusChem; 2013 Jun; 6(6):1076-83. PubMed ID: 23650194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly shape-selective synthesis, silica coating, self-assembly, and magnetic hydrogen sensing of hematite nanoparticles.
    Zhang J; Thurber A; Hanna C; Punnoose A
    Langmuir; 2010 Apr; 26(7):5273-8. PubMed ID: 20000651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of ultrathin metal coordination Prussian blue nanoribbons.
    Bao S; Qin W; Wu Q; Liang G; Zhu F; Wu Q
    Dalton Trans; 2013 Apr; 42(15):5242-6. PubMed ID: 23462710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes.
    Wang D; Wang Q; Wang T
    Nanotechnology; 2011 Apr; 22(13):135604. PubMed ID: 21343642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hematite (
    Sakamoto M; Fujita R; Nishikawa M; Hirazawa H; Ueno Y; Yamamoto M; Takaoka S
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green Synthesis of Hexagonal Hematite (α-Fe
    Ulfa M; Prasetyoko D; Bahruji H; Nugraha RE
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons.
    Santara B; Giri PK; Imakita K; Fujii M
    Nanoscale; 2013 Jun; 5(12):5476-88. PubMed ID: 23669740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.
    Bai H; Liu L; Liu Z; Sun DD
    Water Res; 2013 Aug; 47(12):4126-38. PubMed ID: 23579088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.