These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24180526)

  • 1. A novel strategy for classifying the output from an in silico vaccine discovery pipeline for eukaryotic pathogens using machine learning algorithms.
    Goodswen SJ; Kennedy PJ; Ellis JT
    BMC Bioinformatics; 2013 Nov; 14():315. PubMed ID: 24180526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing in silico protein-based vaccine discovery for eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores.
    Goodswen SJ; Kennedy PJ; Ellis JT
    PLoS One; 2014; 9(12):e115745. PubMed ID: 25545691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse vaccinology.
    Goodswen SJ; Kennedy PJ; Ellis JT
    Bioinformatics; 2014 Aug; 30(16):2381-3. PubMed ID: 24790156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Antigen Discovery for Eukaryotic Pathogens Using Vacceed.
    Goodswen SJ; Kennedy PJ; Ellis JT
    Methods Mol Biol; 2021; 2183():29-42. PubMed ID: 32959239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology.
    Rizwan M; Naz A; Ahmad J; Naz K; Obaid A; Parveen T; Ahsan M; Ali A
    BMC Bioinformatics; 2017 Feb; 18(1):106. PubMed ID: 28193166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ReVac: a reverse vaccinology computational pipeline for prioritization of prokaryotic protein vaccine candidates.
    D'Mello A; Ahearn CP; Murphy TF; Tettelin H
    BMC Genomics; 2019 Dec; 20(1):981. PubMed ID: 31842745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Gene-Based Positive Selection Detection Approach to Identify Vaccine Candidates Using
    Goodswen SJ; Kennedy PJ; Ellis JT
    Front Genet; 2018; 9():332. PubMed ID: 30177953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico analysis and expression of a novel chimeric antigen as a vaccine candidate against Toxoplasma gondii.
    Dodangeh S; Fasihi-Ramandi M; Daryani A; Valadan R; Sarvi S
    Microb Pathog; 2019 Jul; 132():275-281. PubMed ID: 31078709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome-scale identification of Leishmania infantum for novel vaccine candidates: A hierarchical subtractive approach.
    Vakili B; Nezafat N; Hatam GR; Zare B; Erfani N; Ghasemi Y
    Comput Biol Chem; 2018 Feb; 72():16-25. PubMed ID: 29291591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A guide to in silico vaccine discovery for eukaryotic pathogens.
    Goodswen SJ; Kennedy PJ; Ellis JT
    Brief Bioinform; 2013 Nov; 14(6):753-74. PubMed ID: 23097412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-silico screening, identification and validation of a novel vaccine candidate in the fight against Plasmodium falciparum.
    Panda SK; Mahapatra RK
    Parasitol Res; 2017 Apr; 116(4):1293-1305. PubMed ID: 28236172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the gene structure annotation of the apicomplexan parasite Neospora caninum fulfils a vital requirement towards an in silico-derived vaccine.
    Goodswen SJ; Barratt JL; Kennedy PJ; Ellis JT
    Int J Parasitol; 2015 Apr; 45(5):305-18. PubMed ID: 25747726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vaxi-DL: A web-based deep learning server to identify potential vaccine candidates.
    Rawal K; Sinha R; Nath SK; Preeti P; Kumari P; Gupta S; Sharma T; Strych U; Hotez P; Bottazzi ME
    Comput Biol Med; 2022 Jun; 145():105401. PubMed ID: 35381451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the protective efficacy of Ornithodoros moubata midgut membrane antigens selected using omics and in silico prediction algorithms.
    Obolo-Mvoulouga P; Oleaga A; Manzano-Román R; Pérez-Sánchez R
    Ticks Tick Borne Dis; 2018 Jul; 9(5):1158-1172. PubMed ID: 29728336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunoinformatics:
    Bahrami AA; Payandeh Z; Khalili S; Zakeri A; Bandehpour M
    Int Rev Immunol; 2019; 38(6):307-322. PubMed ID: 31478759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NERVE: new enhanced reverse vaccinology environment.
    Vivona S; Bernante F; Filippini F
    BMC Biotechnol; 2006 Jul; 6():35. PubMed ID: 16848907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum.
    Pritam M; Singh G; Swaroop S; Singh AK; Singh SP
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):468. PubMed ID: 30717656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reverse vaccinology approach for the identification of potential vaccine candidates from Leishmania spp.
    John L; John GJ; Kholia T
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1340-50. PubMed ID: 22434357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational tools for epitope vaccine design and evaluation.
    He L; Zhu J
    Curr Opin Virol; 2015 Apr; 11():103-12. PubMed ID: 25837467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.