These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
953 related articles for article (PubMed ID: 2418074)
1. The terminations of corticospinal tract axons in the macaque monkey. Ralston DD; Ralston HJ J Comp Neurol; 1985 Dec; 242(3):325-37. PubMed ID: 2418074 [TBL] [Abstract][Full Text] [Related]
2. Corticomotoneuronal connections in the rat: evidence from double-labeling of motoneurons and corticospinal axon arborizations. Liang FY; Moret V; Wiesendanger M; Rouiller EM J Comp Neurol; 1991 Sep; 311(3):356-66. PubMed ID: 1720143 [TBL] [Abstract][Full Text] [Related]
3. Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys. Cheema SS; Rustioni A; Whitsel BL J Comp Neurol; 1984 May; 225(2):276-90. PubMed ID: 6547152 [TBL] [Abstract][Full Text] [Related]
4. Bilateral corticospinal projections arise from each motor cortex in the macaque monkey: a quantitative study. Lacroix S; Havton LA; McKay H; Yang H; Brant A; Roberts J; Tuszynski MH J Comp Neurol; 2004 May; 473(2):147-61. PubMed ID: 15101086 [TBL] [Abstract][Full Text] [Related]
5. Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat. Allen GV; Hopkins DA J Comp Neurol; 1990 Nov; 301(2):214-31. PubMed ID: 1702105 [TBL] [Abstract][Full Text] [Related]
6. Topographically organized projections from the nucleus subceruleus to the hypoglossal nucleus in the rat: a light and electron microscopic study with complementary axonal transport techniques. Aldes LD J Comp Neurol; 1990 Dec; 302(3):643-56. PubMed ID: 1702122 [TBL] [Abstract][Full Text] [Related]
7. The distribution of dorsal root axons to laminae IV, V, and VI of the Macaque spinal cord: a quantitative electron microscopic study. Ralston HJ; Ralston DD J Comp Neurol; 1982 Dec; 212(4):435-48. PubMed ID: 6891705 [TBL] [Abstract][Full Text] [Related]
8. Primary afferent projections from the upper respiratory tract in the muskrat. Panneton WM J Comp Neurol; 1991 Jun; 308(1):51-65. PubMed ID: 1714922 [TBL] [Abstract][Full Text] [Related]
9. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord. Carlton SM; Hayes ES J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461 [TBL] [Abstract][Full Text] [Related]
10. Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). LaMotte CC; Kapadia SE; Shapiro CM J Comp Neurol; 1991 Sep; 311(4):546-62. PubMed ID: 1721924 [TBL] [Abstract][Full Text] [Related]
11. The projection of spinocerebellar neurons from the sacrococcygeal region of the spinal cord in the cat. An experimental study using anterograde transport of WGA-HRP and degeneration. Xu Q; Grant G Arch Ital Biol; 1990 Jul; 128(2-4):209-28. PubMed ID: 1702608 [TBL] [Abstract][Full Text] [Related]
12. Cells of origin of long descending propriospinal fibers connecting the spinal enlargements in cat and monkey determined by horseradish peroxidase and electrophysiological techniques. Skinner RD; Coulter JD; Adams RJ; Remmel RS J Comp Neurol; 1979 Dec; 188(3):443-54. PubMed ID: 114558 [TBL] [Abstract][Full Text] [Related]
13. Selective projections from the cat red nucleus to digit motor neurons. McCurdy ML; Hansma DI; Houk JC; Gibson AR J Comp Neurol; 1987 Nov; 265(3):367-79. PubMed ID: 2447133 [TBL] [Abstract][Full Text] [Related]
14. Bulbospinal projections in the primate: a light and electron microscopic study of a pain modulating system. Basbaum AI; Ralston DD; Ralston HJ J Comp Neurol; 1986 Aug; 250(3):311-23. PubMed ID: 3745518 [TBL] [Abstract][Full Text] [Related]
15. Cortical projections to superficial laminae of the dorsal horn and to the ventral horn of the spinal cord in the North American opossum. Studies using the orthograde transport of WGA-HRP. Martin GF; Cabana T Brain Res; 1985 Jun; 337(1):188-92. PubMed ID: 3839153 [TBL] [Abstract][Full Text] [Related]
16. Mediodorsal nucleus: areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. Giguere M; Goldman-Rakic PS J Comp Neurol; 1988 Nov; 277(2):195-213. PubMed ID: 2466057 [TBL] [Abstract][Full Text] [Related]
17. Endocytic and exocytic pathways of the neuronal secretory process and trans-synaptic transfer of wheat germ agglutinin-horseradish peroxidase in vivo. Broadwell RD; Balin BJ J Comp Neurol; 1985 Dec; 242(4):632-50. PubMed ID: 2418083 [TBL] [Abstract][Full Text] [Related]
18. Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. Matsushita M; Tanami T J Comp Neurol; 1987 Dec; 266(3):376-97. PubMed ID: 3693617 [TBL] [Abstract][Full Text] [Related]
19. Direct projection of the corticospinal tract to the superficial laminae of the spinal cord in the rat. Casale EJ; Light AR; Rustioni A J Comp Neurol; 1988 Dec; 278(2):275-86. PubMed ID: 3230165 [TBL] [Abstract][Full Text] [Related]
20. Spinocerebellar projections from the cervical enlargement in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. Matsushita M; Ikeda M J Comp Neurol; 1987 Sep; 263(2):223-40. PubMed ID: 3667978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]