These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24180772)

  • 1. Acoustic waveguiding by pliable conduits with axial cross sections as linear waveguides in two-dimensional sonic crystals.
    Cicek A; Kaya OA; Ulug B
    J Acoust Soc Am; 2013 Nov; 134(5):3613-8. PubMed ID: 24180772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quasi two-dimensional model for sound attenuation by the sonic crystals.
    Gupta A; Lim KM; Chew CH
    J Acoust Soc Am; 2012 Oct; 132(4):2909-14. PubMed ID: 23039557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstrations in audible frequency range of band gap tunability and negative refraction in two-dimensional sonic crystal.
    Pichard H; Richoux O; Groby JP
    J Acoust Soc Am; 2012 Oct; 132(4):2816-22. PubMed ID: 23039547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matryoshka locally resonant sonic crystal.
    Elford DP; Chalmers L; Kusmartsev FV; Swallowe GM
    J Acoust Soc Am; 2011 Nov; 130(5):2746-55. PubMed ID: 22087903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundary effects on backscattering by a solid aluminum cylinder: experiment and finite element model comparisons (L).
    La Follett JR; Williams KL; Marston PL
    J Acoust Soc Am; 2011 Aug; 130(2):669-72. PubMed ID: 21877778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antisymmetric feature-guided ultrasonic waves in thin plates with small radius transverse bends from low-frequency symmetric axial excitation.
    Ramdhas A; Pattanayak RK; Balasubramaniam K; Rajagopal P
    J Acoust Soc Am; 2013 Sep; 134(3):1886-98. PubMed ID: 23967922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads.
    Loveday PW
    Ultrasonics; 2009 Mar; 49(3):298-300. PubMed ID: 19108858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.
    Gravenkamp H; Prager J; Saputra AA; Song C
    J Acoust Soc Am; 2012 Sep; 132(3):1358-67. PubMed ID: 22978864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.
    Langley RS; Cotoni V
    J Acoust Soc Am; 2010 Apr; 127(4):2118-28. PubMed ID: 20369993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-controlling phononic crystals: realization of acoustic Boolean logic gates.
    Bringuier S; Swinteck N; Vasseur JO; Robillard JF; Runge K; Muralidharan K; Deymier PA
    J Acoust Soc Am; 2011 Oct; 130(4):1919-25. PubMed ID: 21973346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
    Dijckmans A; Vermeir G
    J Acoust Soc Am; 2013 Apr; 133(4):2157-68. PubMed ID: 23556585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance blocking and passing effects in two-dimensional elastic waveguides with obstacles.
    Glushkov E; Glushkova N; Golub M; Eremin A
    J Acoust Soc Am; 2011 Jul; 130(1):113-21. PubMed ID: 21786882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher harmonic generation in nonlinear waveguides of arbitrary cross-section.
    Srivastava A; Bartoli I; Salamone S; Lanza di Scalea F
    J Acoust Soc Am; 2010 May; 127(5):2790-6. PubMed ID: 21117728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid approach for predicting the distribution of vibro-acoustic energy in complex built-up structures.
    Maksimov DN; Tanner G
    J Acoust Soc Am; 2011 Sep; 130(3):1337-47. PubMed ID: 21895075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic radiation of a submerged cylindrical shell in low frequency.
    Van de Loock J; Décultot D; Léon F; Chati F; Maze G; Rajaona DR; Klauson A
    J Acoust Soc Am; 2013 Jan; 133(1):EL26-32. PubMed ID: 23298014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.
    Pelat A; Felix S; Pagneux V
    J Acoust Soc Am; 2011 Mar; 129(3):1240-9. PubMed ID: 21428487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry.
    Glynne-Jones P; Mishra PP; Boltryk RJ; Hill M
    J Acoust Soc Am; 2013 Apr; 133(4):1885-93. PubMed ID: 23556558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.