These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24180785)

  • 1. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion.
    Edom E; Obrist D; Henniger R; Kleiser L; Sim JH; Huber AM
    J Acoust Soc Am; 2013 Nov; 134(5):3749-58. PubMed ID: 24180785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of complex stapes motion to cochlea activation.
    Eiber A; Huber AM; Lauxmann M; Chatzimichalis M; Sequeira D; Sim JH
    Hear Res; 2012 Feb; 284(1-2):82-92. PubMed ID: 22155337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of basilar membrane radial velocity profile on fluid coupling in the cochlea.
    Ni G; Elliott SJ
    J Acoust Soc Am; 2013 Mar; 133(3):EL181-7. PubMed ID: 23464126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different stapes prostheses on the passive vibration of the basilar membrane.
    Kwacz M; Marek P; Borkowski P; Gambin W
    Hear Res; 2014 Apr; 310():13-26. PubMed ID: 24463104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple electrical lumped-element model simulates intra-cochlear sound pressures and cochlear impedance below 2 kHz.
    Marquardt T; Hensel J
    J Acoust Soc Am; 2013 Nov; 134(5):3730-8. PubMed ID: 24180783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of complex stapes motion on the response of the cochlea.
    Huber AM; Sequeira D; Breuninger C; Eiber A
    Otol Neurotol; 2008 Dec; 29(8):1187-92. PubMed ID: 18580545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane.
    Koike T; Sakamoto C; Sakashita T; Hayashi K; Kanzaki S; Ogawa K
    Hear Res; 2012 Jan; 283(1-2):117-25. PubMed ID: 22115725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the perilymph fluid stimulation before and after experimental stapedotomy.
    Kwacz M; Mrówka M; Wysocki J
    Acta Bioeng Biomech; 2012; 14(2):67-73. PubMed ID: 22793978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-dimensional cochlear fluid model based on conformal mapping.
    Lüling H; Franosch JM; van Hemmen JL
    J Acoust Soc Am; 2010 Dec; 128(6):3577-84. PubMed ID: 21218890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for computing motion in a two-dimensional cochlear model.
    Sondhi MM
    J Acoust Soc Am; 1978 May; 63(5):1468-77. PubMed ID: 690328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear cochlear mechanics.
    Zweig G
    J Acoust Soc Am; 2016 May; 139(5):2561. PubMed ID: 27250151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-plane motions of the stapes in human ears.
    Lauxmann M; Eiber A; Heckeler C; Ihrle S; Chatzimichalis M; Huber A; Sim JH
    J Acoust Soc Am; 2012 Nov; 132(5):3280-91. PubMed ID: 23145612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence on predicted harmonic and distortion product generation of the position of the nonlinearity within cochlear micromechanical models.
    How JA; Elliott SJ; Lineton B
    J Acoust Soc Am; 2010 Feb; 127(2):652-5. PubMed ID: 20136186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.
    Shera CA; Cooper NP
    J Acoust Soc Am; 2013 Apr; 133(4):2224-39. PubMed ID: 23556591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse propagation of sound in the gerbil cochlea.
    Ren T
    Nat Neurosci; 2004 Apr; 7(4):333-4. PubMed ID: 15034589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation of cochlear traveling wave under air and bone conduction hearing.
    Ren LJ; Yu Y; Fang YQ; Hua C; Dai PD; Zhang TY
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1251-1265. PubMed ID: 33786715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A mechanical simulation model of the basilar membrane of the cochlea].
    Miao J; Xiao Z; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Jan; 34(1):79-83. PubMed ID: 24463122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different models of the active cochlea, and how to implement them in the state-space formalism.
    Sisto R; Moleti A; Paternoster N; Botti T; Bertaccini D
    J Acoust Soc Am; 2010 Sep; 128(3):1191-202. PubMed ID: 20815455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.