These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24182001)

  • 41. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.
    Cao Y; Hughes T; Giesen D; Halls MD; Goldberg A; Vadicherla TR; Sastry M; Patel B; Sherman W; Weisman AL; Friesner RA
    J Comput Chem; 2016 Jun; 37(16):1425-41. PubMed ID: 27013141
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How does LCDFT compare to SAC-CI for the treatment of valence and Rydberg excited states of organic compounds?
    Alipour M
    J Phys Chem A; 2014 Mar; 118(9):1741-7. PubMed ID: 24559047
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Semiempirical double-hybrid density functional with improved description of long-range correlation.
    Benighaus T; DiStasio RA; Lochan RC; Chai JD; Head-Gordon M
    J Phys Chem A; 2008 Mar; 112(12):2702-12. PubMed ID: 18318517
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Excited states of DNA base pairs using long-range corrected time-dependent density functional theory.
    Jensen L; Govind N
    J Phys Chem A; 2009 Sep; 113(36):9761-5. PubMed ID: 19678692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The performance and relationship among range-separated schemes for density functional theory.
    Nguyen KA; Day PN; Pachter R
    J Chem Phys; 2011 Aug; 135(7):074109. PubMed ID: 21861558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory.
    Ziegler T; Krykunov M
    J Chem Phys; 2010 Aug; 133(7):074104. PubMed ID: 20726632
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electronic excitations in epicocconone analogues: TDDFT methodological assessment guided by experiment.
    Syzgantseva OA; Tognetti V; Joubert L; Boulangé A; Peixoto PA; Leleu S; Franck X
    J Phys Chem A; 2012 Aug; 116(33):8634-43. PubMed ID: 22882017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computation of vertical excitation energies of retinal and analogs: scope and limitations.
    López CS; Faza ON; Estévez SL; de Lera AR
    J Comput Chem; 2006 Jan; 27(1):116-23. PubMed ID: 16273505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance of ab initio and density functional methods for conformational equilibria of C(n)H(2n+2) alkane isomers (n = 4-8).
    Gruzman D; Karton A; Martin JM
    J Phys Chem A; 2009 Oct; 113(43):11974-83. PubMed ID: 19795892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes:  Conventional versus Long-Range Hybrids.
    Jacquemin D; Perpète EA; Scuseria GE; Ciofini I; Adamo C
    J Chem Theory Comput; 2008 Jan; 4(1):123-35. PubMed ID: 26619986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory.
    Peverati R; Truhlar DG
    Phys Chem Chem Phys; 2012 Aug; 14(32):11363-70. PubMed ID: 22801459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analytic gradients, geometry optimization and excited state potential energy surfaces from the particle-particle random phase approximation.
    Zhang D; Peng D; Zhang P; Yang W
    Phys Chem Chem Phys; 2015 Jan; 17(2):1025-38. PubMed ID: 25410624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Violation of Hund's rule in molecules: Predicting the excited-state energy inversion by TD-DFT with double-hybrid methods.
    Sancho-García JC; Brémond E; Ricci G; Pérez-Jiménez AJ; Olivier Y; Adamo C
    J Chem Phys; 2022 Jan; 156(3):034105. PubMed ID: 35065561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Harmonic vibrational frequencies: scale factors for pure, hybrid, hybrid meta, and double-hybrid functionals in conjunction with correlation consistent basis sets.
    Laury ML; Boesch SE; Haken I; Sinha P; Wheeler RA; Wilson AK
    J Comput Chem; 2011 Aug; 32(11):2339-47. PubMed ID: 21598273
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation.
    Kühn M; Weigend F
    J Chem Phys; 2015 Jan; 142(3):034116. PubMed ID: 25612698
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accurate evaluation of valence and low-lying Rydberg states with standard time-dependent density functional theory.
    Ciofini I; Adamo C
    J Phys Chem A; 2007 Jun; 111(25):5549-56. PubMed ID: 17542570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation.
    Isegawa M; Truhlar DG
    J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wavefunction-like Correlation Model for Use in Hybrid Density Functionals.
    Wiles TC; Manby FR
    J Chem Theory Comput; 2018 Sep; 14(9):4590-4599. PubMed ID: 30080967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calculation of electronic circular dichroism spectra with time-dependent double-hybrid density functional theory.
    Goerigk L; Grimme S
    J Phys Chem A; 2009 Jan; 113(4):767-76. PubMed ID: 19102628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.