These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 24182043)

  • 41. Sedimentation equilibrium of colloidal suspensions in a planar pore based on density functional theory and the hard-core attractive Yukawa model.
    Zhou S; Sun H
    J Phys Chem B; 2005 Apr; 109(13):6397-404. PubMed ID: 16851712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Obtaining effective pair potentials in colloidal monolayers using a thermodynamically consistent inversion scheme.
    Law AD; Buzza DM
    Langmuir; 2010 May; 26(10):7107-16. PubMed ID: 20405861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of the optimized Baxter model to the hard-core attractive Yukawa system.
    Prinsen P; Pàmies JC; Odijk T; Frenkel D
    J Chem Phys; 2006 Nov; 125(19):194506. PubMed ID: 17129122
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Liquid-Vapor Coexistence in the Screened Coulomb (Yukawa) Hard Sphere Binary Mixture in Disordered Porous Media: The Mean Spherical Approximation.
    Trokhymchuk A; Orozco GA; Pizio O; Vlachy V
    J Colloid Interface Sci; 1998 Nov; 207(2):379-385. PubMed ID: 9792783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The vanishing limit of the square-well fluid: the adhesive hard-sphere model as a reference system.
    Largo J; Miller MA; Sciortino F
    J Chem Phys; 2008 Apr; 128(13):134513. PubMed ID: 18397083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermodiffusion of interacting colloids. II. A microscopic approach.
    Dhont JK
    J Chem Phys; 2004 Jan; 120(3):1642-53. PubMed ID: 15268292
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Equation of state and liquid-vapor equilibria of one- and two-Yukawa hard-sphere chain fluids: theory and simulation.
    Kalyuzhnyi YV; McCabe C; Whitebay E; Cummings PT
    J Chem Phys; 2004 Oct; 121(16):8128-37. PubMed ID: 15485277
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The first three coefficients in the high temperature series expansion of free energy for simple potential models with hard-sphere cores and continuous tails.
    Zhou S; Solana JR
    J Phys Chem B; 2013 Aug; 117(31):9305-13. PubMed ID: 23844918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined temperature and density series for fluid-phase properties. II. Lennard-Jones spheres.
    Elliott JR; Schultz AJ; Kofke DA
    J Chem Phys; 2019 Nov; 151(20):204501. PubMed ID: 31779334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions.
    Gazzillo D; Giacometti A; Fantoni R; Sollich P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051407. PubMed ID: 17279909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystallization limits of the two-term Yukawa potentials based on the entropy criterion.
    Lee LL; Hara MC; Simon SJ; Ramos FS; Winkle AJ; Bomont JM
    J Chem Phys; 2010 Feb; 132(7):074505. PubMed ID: 20170235
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ising fluids in an external magnetic field: an integral equation approach.
    Omelyan IP; Mryglod IM; Folk R; Fenz W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061506. PubMed ID: 15244575
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effective interactions in polydisperse colloidal suspensions investigated using Ornstein-Zernike integral equations.
    Bryk P; Bryk M
    J Colloid Interface Sci; 2009 Oct; 338(1):92-8. PubMed ID: 19564024
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.
    Shin H; Schweizer KS
    J Chem Phys; 2013 Feb; 138(8):084510. PubMed ID: 23464163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rotational self-diffusion in suspensions of charged particles: simulations and revised Beenakker-Mazur and pairwise additivity methods.
    Makuch K; Heinen M; Abade GC; Nägele G
    Soft Matter; 2015 Jul; 11(26):5313-26. PubMed ID: 26054032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase diagram of two-dimensional colloids with Yukawa repulsion and dipolar attraction.
    Kryuchkov NP; Smallenburg F; Ivlev AV; Yurchenko SO; Löwen H
    J Chem Phys; 2019 Mar; 150(10):104903. PubMed ID: 30876353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of the range of attractive interactions on crystallization, metastable phase transition, and percolation in colloidal dispersions.
    Fu D; Li Y; Wu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011403. PubMed ID: 12935139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generalized equation of state for fluids: From molecular liquids to colloidal dispersions.
    Perdomo-Hurtado L; Valadez-Pérez NE; Millan-Malo B; Castañeda-Priego R
    J Chem Phys; 2021 Feb; 154(8):084902. PubMed ID: 33639744
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase coexistence in polydisperse multi-Yukawa hard-sphere fluid: high temperature approximation.
    Kalyuzhnyi YV; Hlushak SP
    J Chem Phys; 2006 Jul; 125(3):34501. PubMed ID: 16863356
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory.
    Díez A; Largo J; Solana JR
    J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.