These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24182046)

  • 1. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols.
    Gao Y; Tu W; Chen Z; Tian Y; Liu R; Wang LM
    J Chem Phys; 2013 Oct; 139(16):164504. PubMed ID: 24182046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Debye-type dielectric relaxation in glass-forming 3-methylthio-1-hexanol.
    Gao Y; Bi D; Li X; Liu R; Tian Y; Wang LM
    J Chem Phys; 2013 Jul; 139(2):024503. PubMed ID: 23862949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual dielectric strength of Debye relaxation in monohydroxy alcohols upon mixing.
    Gong H; Chen Z; Bi D; Sun M; Tian Y; Wang LM
    J Phys Chem B; 2012 Sep; 116(37):11482-7. PubMed ID: 22913462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols.
    Wang LM; Shahriari S; Richert R
    J Phys Chem B; 2005 Dec; 109(49):23255-62. PubMed ID: 16375290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols.
    Wang LM; Richert R
    J Chem Phys; 2004 Dec; 121(22):11170-6. PubMed ID: 15634071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of dielectric and structural relaxations in glass-forming secondary amides.
    Wang LM; Richert R
    J Chem Phys; 2005 Aug; 123(5):054516. PubMed ID: 16108678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ideal mixing behavior of the debye process in supercooled monohydroxy alcohols.
    Wang LM; Richert R
    J Phys Chem B; 2005 May; 109(18):8767-73. PubMed ID: 16852040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols.
    Bauer S; Burlafinger K; Gainaru C; Lunkenheimer P; Hiller W; Loidl A; Böhmer R
    J Chem Phys; 2013 Mar; 138(9):094505. PubMed ID: 23485311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B; Maggi C; Christensen T; Dyre JC
    J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Debye type dielectric relaxation and the glass transition of alcohols.
    Wang LM; Richert R
    J Phys Chem B; 2005 Jun; 109(22):11091-4. PubMed ID: 16852352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric versus kinetic glass transitions in viscous monohydroxy alcohols.
    Wang LM; Tian Y; Liu R; Richert R
    J Chem Phys; 2008 Feb; 128(8):084503. PubMed ID: 18315057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols.
    Wikarek M; Pawlus S; Tripathy SN; Szulc A; Paluch M
    J Phys Chem B; 2016 Jun; 120(25):5744-52. PubMed ID: 27254726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diluting the hydrogen bonds in viscous solutions of n-butanol with n-bromobutane: a dielectric study.
    El Goresy T; Böhmer R
    J Chem Phys; 2008 Apr; 128(15):154520. PubMed ID: 18433248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Mechanism of the Debye Relaxation in Monohydroxy Alcohols Revealed from Rheo-Dielectric Spectroscopy.
    Patil S; Sun R; Cheng S; Cheng S
    Phys Rev Lett; 2023 Mar; 130(9):098201. PubMed ID: 36930926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of the Debye-Process in Monohydroxy Alcohols: 5-Methyl-2-Hexanol Investigated by Depolarized Light Scattering and Dielectric Spectroscopy.
    Gabriel J; Pabst F; Helbling A; Böhmer T; Blochowicz T
    Phys Rev Lett; 2018 Jul; 121(3):035501. PubMed ID: 30085796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear magnetic resonance and dielectric noise study of spectral densities and correlation functions in the glass forming monoalcohol 2-ethyl-1-hexanol.
    Schildmann S; Reiser A; Gainaru R; Gainaru C; Böhmer R
    J Chem Phys; 2011 Nov; 135(17):174511. PubMed ID: 22070310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics changes induced by solvent in 2-ethyl-1-hexanol.
    Pawlus S; Paluch M; Dzida M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031503. PubMed ID: 22060375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol.
    Huth H; Wang LM; Schick C; Richert R
    J Chem Phys; 2007 Mar; 126(10):104503. PubMed ID: 17362071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental studies of Debye-like process and structural relaxation in mixtures of 2-ethyl-1-hexanol and 2-ethyl-1-hexyl bromide.
    Preuß M; Gainaru C; Hecksher T; Bauer S; Dyre JC; Richert R; Böhmer R
    J Chem Phys; 2012 Oct; 137(14):144502. PubMed ID: 23061850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear-magnetic-resonance measurements reveal the origin of the Debye process in monohydroxy alcohols.
    Gainaru C; Meier R; Schildmann S; Lederle C; Hiller W; Rössler EA; Böhmer R
    Phys Rev Lett; 2010 Dec; 105(25):258303. PubMed ID: 21231631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.