BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24182070)

  • 1. Engineering the plasmonic optical properties of cubic silver nanostructures based on Fano resonance.
    Yang Z; Wang M; Song X; Deng J; Yao X
    J Chem Phys; 2013 Oct; 139(16):164713. PubMed ID: 24182070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fano resonance by dipole-hexapole coupling in a χ-shaped plasmonic nanostructure.
    Kim KH; Kim SH; Bae MC
    Appl Opt; 2015 Apr; 54(10):2710-4. PubMed ID: 25967180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Fano resonances in coupled plasmonic systems.
    Lovera A; Gallinet B; Nordlander P; Martin OJ
    ACS Nano; 2013 May; 7(5):4527-36. PubMed ID: 23614396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Optical Properties of Ag-Al Nanosphere Heterodimer].
    Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance.
    Hao F; Sonnefraud Y; Van Dorpe P; Maier SA; Halas NJ; Nordlander P
    Nano Lett; 2008 Nov; 8(11):3983-8. PubMed ID: 18831572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Fano resonances in hybrid disk/rod artificial plasmonic molecules based on dipole-quadrupole coupling.
    Chen Z; Zhang S; Chen Y; Liu Y; Li P; Wang Z; Zhu X; Bi K; Duan H
    Nanoscale; 2020 May; 12(17):9776-9785. PubMed ID: 32324182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fano resonance in dual-disk ring plasmonic nanostructures.
    Niu L; Zhang JB; Fu YH; Kulkarni S; Luky Anchuk B
    Opt Express; 2011 Nov; 19(23):22974-81. PubMed ID: 22109176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fano resonances in plasmonic nanoparticle aggregates.
    Mirin NA; Bao K; Nordlander P
    J Phys Chem A; 2009 Apr; 113(16):4028-34. PubMed ID: 19371111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are Hot Spots between Two Plasmonic Nanocubes of Silver or Gold Formed between Adjacent Corners or Adjacent Facets? A DDA Examination.
    Hooshmand N; Bordley JA; El-Sayed MA
    J Phys Chem Lett; 2014 Jul; 5(13):2229-34. PubMed ID: 26279539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers.
    Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J
    Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Fano-like interference to superscattering with a single metallic nanodisk.
    Wan W; Zheng W; Chen Y; Liu Z
    Nanoscale; 2014 Aug; 6(15):9093-102. PubMed ID: 24975582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fano resonances in individual coherent plasmonic nanocavities.
    Verellen N; Sonnefraud Y; Sobhani H; Hao F; Moshchalkov VV; Van Dorpe P; Nordlander P; Maier SA
    Nano Lett; 2009 Apr; 9(4):1663-7. PubMed ID: 19281254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities.
    Sonnefraud Y; Verellen N; Sobhani H; Vandenbosch GA; Moshchalkov VV; Van Dorpe P; Nordlander P; Maier SA
    ACS Nano; 2010 Mar; 4(3):1664-70. PubMed ID: 20155967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures.
    Gonçalves MR; Melikyan A; Minassian H; Makaryan T; Marti O
    Opt Express; 2014 Oct; 22(20):24516-29. PubMed ID: 25322027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding near/far-field engineering of optical dimer antennas through geometry modification.
    Ding W; Bachelot R; Espiau de Lamaestre R; Macias D; Baudrion AL; Royer P
    Opt Express; 2009 Nov; 17(23):21228-39. PubMed ID: 19997362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between near-field and far-field properties of plasmonic Fano resonances.
    Gallinet B; Martin OJ
    Opt Express; 2011 Oct; 19(22):22167-75. PubMed ID: 22109059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Close-packed two-dimensional silver nanoparticle arrays: quadrupolar and dipolar surface plasmon resonance coupling.
    Yun S; Hong S; Acapulco JA; Jang HY; Ham S; Lee K; Kim SK; Park S
    Chemistry; 2015 Apr; 21(16):6165-72. PubMed ID: 25739448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.