These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24182070)

  • 41. Planar plasmonic chiral nanostructures.
    Zu S; Bao Y; Fang Z
    Nanoscale; 2016 Feb; 8(7):3900-5. PubMed ID: 26818746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Control of radiative processes using tunable plasmonic nanopatch antennas.
    Rose A; Hoang TB; McGuire F; Mock JJ; Ciracì C; Smith DR; Mikkelsen MH
    Nano Lett; 2014 Aug; 14(8):4797-802. PubMed ID: 25020029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoparticle attachment on silver corrugated-wire nanoantenna for large increases of surface-enhanced Raman scattering.
    Tian C; Ding C; Liu S; Yang S; Song X; Ding B; Li Z; Fang J
    ACS Nano; 2011 Dec; 5(12):9442-9. PubMed ID: 22059897
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Double Fano resonances in plasmonic nanocross molecules and magnetic plasmon propagation.
    Li GZ; Li Q; Wu LJ
    Nanoscale; 2015 Dec; 7(47):19914-20. PubMed ID: 26580687
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators.
    Peña-Rodríguez O; Pal U
    Nanoscale; 2011 Sep; 3(9):3609-12. PubMed ID: 21811742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet.
    Toma M; Toma K; Michioka K; Ikezoe Y; Obara D; Okamoto K; Tamada K
    Phys Chem Chem Phys; 2011 Apr; 13(16):7459-66. PubMed ID: 21423985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fano-like resonance in symmetry-broken gold nanotube dimer.
    Wu D; Jiang S; Cheng Y; Liu X
    Opt Express; 2012 Nov; 20(24):26559-67. PubMed ID: 23187511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance.
    Lee KL; Chang CC; You ML; Pan MY; Wei PK
    Sci Rep; 2018 Jun; 8(1):9762. PubMed ID: 29950690
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Universal scaling and Fano resonance in the plasmon coupling between gold nanorods.
    Woo KC; Shao L; Chen H; Liang Y; Wang J; Lin HQ
    ACS Nano; 2011 Jul; 5(7):5976-86. PubMed ID: 21702485
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic plasmonic Fano resonance at optical frequency.
    Bao Y; Hu Z; Li Z; Zhu X; Fang Z
    Small; 2015 May; 11(18):2177-81. PubMed ID: 25594885
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.
    Drozdowicz-Tomsia K; Baltar HT; Goldys EM
    Langmuir; 2012 Jun; 28(24):9071-81. PubMed ID: 22439753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlling Fano resonance of ring/crescent-ring plasmonic nanostructure with Bessel beam.
    Xiao F; Zhu W; Premaratne M; Zhao J
    Opt Express; 2014 Jan; 22(2):2132-40. PubMed ID: 24515223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces.
    Hooshmand N; El-Sayed MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19299-19304. PubMed ID: 31488713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.
    Vogt J; Huck C; Neubrech F; Toma A; Gerbert D; Pucci A
    Phys Chem Chem Phys; 2015 Sep; 17(33):21169-75. PubMed ID: 25516198
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface plasmon near-field resonance characteristics of silver shell nanocylinders arranged in triangular geometry.
    Jacob J; R A; Mathew V
    Appl Opt; 2011 Nov; 50(33):6277-82. PubMed ID: 22108888
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmon response evaluation based on image-derived arbitrary nanostructures.
    Trautmann S; Richard-Lacroix M; Dathe A; Schneidewind H; Dellith J; Fritzsche W; Deckert V
    Nanoscale; 2018 May; 10(21):9830-9839. PubMed ID: 29774907
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding.
    Luo Y; Lei DY; Maier SA; Pendry JB
    ACS Nano; 2012 Jul; 6(7):6492-506. PubMed ID: 22713362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.