These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24182073)

  • 1. Distinction in binding of peptides (P2E) and its mutations (P2G, P2Q) to a graphene sheet via a hierarchical coarse-grained Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2013 Oct; 139(16):164901. PubMed ID: 24182073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of solvated peptide (EPLQLKM) with a graphene sheet via simulated coarse-grained approach.
    Sheikholeslami S; Pandey RB; Dragneva N; Floriano W; Rubel O; Barr SA; Kuang Z; Berry R; Naik R; Farmer B
    J Chem Phys; 2014 May; 140(20):204901. PubMed ID: 24880319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofunctionalization and immobilization of a membrane via peptide binding (CR3-1, S2) by a Monte Carlo simulation.
    Pandey RB; Heinz H; Feng J; Farmer BL
    J Chem Phys; 2010 Sep; 133(9):095102. PubMed ID: 20831337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residue energy and mobility in sequence to global structure and dynamics of a HIV-1 protease (1DIFA) by a coarse-grained Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2009 Jan; 130(4):044906. PubMed ID: 19191412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchical coarse-grained (all-atom-to-all-residue) computer simulation approach: self-assembly of peptides.
    Pandey RB; Kuang Z; Farmer BL
    PLoS One; 2013; 8(8):e70847. PubMed ID: 23967121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational response to solvent interaction and temperature of a protein (Histone h3.1) by a multi-grained monte carlo simulation.
    Pandey RB; Farmer BL
    PLoS One; 2013; 8(10):e76069. PubMed ID: 24204592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of peptide-graphene interactions in explicit water.
    Camden AN; Barr SA; Berry RJ
    J Phys Chem B; 2013 Sep; 117(37):10691-7. PubMed ID: 23964693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of polyalanine using a reduced model and statistics-based interaction potentials.
    van Giessen AE; Straub JE
    J Chem Phys; 2005 Jan; 122(2):024904. PubMed ID: 15638627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations.
    Collet O; Chipot C
    J Am Chem Soc; 2003 May; 125(21):6573-80. PubMed ID: 12785798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2014 Nov; 141(17):175103. PubMed ID: 25381549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation.
    Pandey RB; Jacobs DJ; Farmer BL
    J Chem Phys; 2017 May; 146(19):195101. PubMed ID: 28527439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolding of an antimicrobial peptide (KSL) by a scale-down coarse-grained approach.
    Hissam RS; Farmer BL; Pandey RB
    Phys Chem Chem Phys; 2011 Dec; 13(48):21262-72. PubMed ID: 22031450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation.
    Pandey RB; Heinz H; Feng J; Farmer BL; Slocik JM; Drummy LF; Naik RR
    Phys Chem Chem Phys; 2009 Mar; 11(12):1989-2001. PubMed ID: 19280010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of the peptide recognition at the consensus binding site of the constant fragment of human immunoglobulin G: the energy landscape analysis of a hot spot at the intermolecular interface.
    Verkhivker GM; Bouzida D; Gehlhaar DK; Rejto PA; Freer ST; Rose PW
    Proteins; 2002 Aug; 48(3):539-57. PubMed ID: 12112677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular assembly of a biomineralizing antimicrobial peptide in coarse-grained Monte Carlo simulations.
    Eby DM; Johnson GR; Farmer BL; Pandey RB
    Phys Chem Chem Phys; 2011 Jan; 13(3):1123-30. PubMed ID: 21072418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of polypeptides into left-handedly twisted fibril-like structures.
    Mu Y; Gao YQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041927. PubMed ID: 19905362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobicity-driven unfolding of Trp-cage encapsulated between graphene sheets.
    Cai Z; Zhang Y
    Colloids Surf B Biointerfaces; 2018 Aug; 168():103-108. PubMed ID: 29627125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.