These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24182133)

  • 1. The electrically detected magnetic resonance microscope: combining conductive atomic force microscopy with electrically detected magnetic resonance.
    Klein K; Hauer B; Stoib B; Trautwein M; Matich S; Huebl H; Astakhov O; Finger F; Bittl R; Stutzmann M; Brandt MS
    Rev Sci Instrum; 2013 Oct; 84(10):103911. PubMed ID: 24182133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-frequency EDMR applied to microcrystalline thin-film silicon solar cells.
    Meier C; Behrends J; Teutloff C; Astakhov O; Schnegg A; Lips K; Bittl R
    J Magn Reson; 2013 Sep; 234():1-9. PubMed ID: 23820089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically detected magnetic resonance signal intensity at resonant frequencies from 300 to 900 MHz in a constant microwave field.
    Sato T; Yokoyama H; Ohya H; Kamada H
    J Magn Reson; 1999 Aug; 139(2):422-9. PubMed ID: 10423380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow- and rapid-scan frequency-swept electrically detected magnetic resonance of MOSFETs with a non-resonant microwave probe within a semiconductor wafer-probing station.
    McCrory DJ; Anders MA; Ryan JT; Shrestha PR; Cheung KP; Lenahan PM; Campbell JP
    Rev Sci Instrum; 2019 Jan; 90(1):014708. PubMed ID: 30709237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically detected magnetic resonance in a W-band microwave cavity.
    Lang V; Lo CC; George RE; Lyon SA; Bokor J; Schenkel T; Ardavan A; Morton JJ
    Rev Sci Instrum; 2011 Mar; 82(3):034704. PubMed ID: 21456773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive observation of electrically detected magnetic resonance in bulk material using AC bias.
    Sato T; Yokoyama H; Ohya H
    J Magn Reson; 2005 Jul; 175(1):73-8. PubMed ID: 15949750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CW and pulsed electrically detected magnetic resonance spectroscopy at 263GHz/12T on operating amorphous silicon solar cells.
    Akhtar W; Schnegg A; Veber S; Meier C; Fehr M; Lips K
    J Magn Reson; 2015 Aug; 257():94-101. PubMed ID: 26112328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wafer-Level Electrically Detected Magnetic Resonance: Magnetic Resonance in a Probing Station.
    McCrory DJ; Anders MA; Ryan JT; Shrestha PR; Cheung KP; Lenahan PM; Campbell JP
    IEEE Trans Device Mater Reliab; 2018; 18():. PubMed ID: 30983909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of electrically detected magnetic resonance of a silicon wafer.
    Sato T; Yokoyama H; Ohya H; Kamada H
    J Magn Reson; 2001 Nov; 153(1):113-6. PubMed ID: 11700087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of integrated SECM ultra-micro-electrode and AFM force probe to biosensor surfaces.
    Hirata Y; Yabuki S; Mizutani F
    Bioelectrochemistry; 2004 Jun; 63(1-2):217-24. PubMed ID: 15110275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback.
    Dede M; Urkmen K; Girişen O; Atabak M; Oral A; Farrer I; Ritchie D
    J Nanosci Nanotechnol; 2008 Feb; 8(2):619-22. PubMed ID: 18464380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy.
    Marcott C; Lo M; Kjoller K; Prater C; Noda I
    Appl Spectrosc; 2011 Oct; 65(10):1145-50. PubMed ID: 21986074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance.
    Katz I; Fehr M; Schnegg A; Lips K; Blank A
    J Magn Reson; 2015 Feb; 251():26-35. PubMed ID: 25557860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization.
    Dazzi A; Prater CB; Hu Q; Chase DB; Rabolt JF; Marcott C
    Appl Spectrosc; 2012 Dec; 66(12):1365-84. PubMed ID: 23231899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband electrically detected magnetic resonance using adiabatic pulses.
    Hrubesch FM; Braunbeck G; Voss A; Stutzmann M; Brandt MS
    J Magn Reson; 2015 May; 254():62-9. PubMed ID: 25828243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum.
    Schaefer-Nolte E; Reinhard F; Ternes M; Wrachtrup J; Kern K
    Rev Sci Instrum; 2014 Jan; 85(1):013701. PubMed ID: 24517769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.
    Nalladega V; Sathish S; Jata KV; Blodgett MP
    Rev Sci Instrum; 2008 Jul; 79(7):073705. PubMed ID: 18681706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes.
    Lai K; Ji MB; Leindecker N; Kelly MA; Shen ZX
    Rev Sci Instrum; 2007 Jun; 78(6):063702. PubMed ID: 17614611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the sensitivity of the first four flexural modes of an AFM cantilever with a sidewall probe.
    Chang WJ; Lee HL; Chen TY
    Ultramicroscopy; 2008 Jun; 108(7):619-24. PubMed ID: 18037563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.