These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24182149)

  • 21. Laser-triggered carbon nanotube microdevice for remote control of biocatalytic reactions.
    Miyako E; Nagata H; Hirano K; Hirotsu T
    Lab Chip; 2009 Mar; 9(6):788-94. PubMed ID: 19255660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.
    Fei S; Chen J; Yao S; Deng G; He D; Kuang Y
    Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanodiode based on a multiwall CN(x)/carbon nanotube intramolecular junction.
    Chai Y; Zhou XL; Li PJ; Zhang WJ; Zhang QF; Wu JL
    Nanotechnology; 2005 Oct; 16(10):2134-7. PubMed ID: 20817985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrochemical impedance measurement of a carbon nanotube probe electrode.
    Inaba A; Takei Y; Kan T; Matsumoto K; Shimoyama I
    Nanotechnology; 2012 Dec; 23(48):485302. PubMed ID: 23124171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman-Based Steady-State Thermal Characterization of Multiwall Carbon Nanotube Bundle and Buckypaper.
    Li M; Yue Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3004-10. PubMed ID: 26353527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optoelectronic stimulation of the brain using carbon nanotubes.
    Mohy-Ud-Din Z; Woo SH; Kim JH; Cho JH
    Ann Biomed Eng; 2010 Nov; 38(11):3500-8. PubMed ID: 20574766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum dot modified multiwall carbon nanotubes.
    Olek M; Büsgen T; Hilgendorff M; Giersig M
    J Phys Chem B; 2006 Jul; 110(26):12901-4. PubMed ID: 16805589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.
    Sanchez JA; Mengüç MP
    Nanotechnology; 2008 Feb; 19(7):075702. PubMed ID: 21817650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.
    Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL
    J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tip-enhanced Raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes.
    Wang R; Wang J; Hao F; Zhang M; Tian Q
    Appl Opt; 2010 Apr; 49(10):1845-8. PubMed ID: 20357868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absorptance behavior of optical coatings for high-average-power laser applications.
    Chow R; Taylor JR; Wu ZL
    Appl Opt; 2000 Feb; 39(4):650-8. PubMed ID: 18337938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.
    Wingert MC; Chen ZC; Kwon S; Xiang J; Chen R
    Rev Sci Instrum; 2012 Feb; 83(2):024901. PubMed ID: 22380117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laser induced selective removal of metallic carbon nanotubes.
    Mahjouri-Samani M; Zhou YS; Xiong W; Gao Y; Mitchell M; Lu YF
    Nanotechnology; 2009 Dec; 20(49):495202. PubMed ID: 19893146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method.
    Choi TY; Maneshian MH; Kang B; Chang WS; Han CS; Poulikakos D
    Nanotechnology; 2009 Aug; 20(31):315706. PubMed ID: 19597251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings.
    Li Z; Kandel HR; Dervishi E; Saini V; Xu Y; Biris AR; Lupu D; Salamo GJ; Biris AS
    Langmuir; 2008 Mar; 24(6):2655-62. PubMed ID: 18251555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Cu nanoparticle size on the photo-electrochemical response from Cu-multiwall carbon nanotube composites.
    Scarselli M; Castrucci P; Camilli L; Del Gobbo S; Casciardi S; Tombolini F; Gatto E; Venanzi M; De Crescenzi M
    Nanotechnology; 2011 Jan; 22(3):035701. PubMed ID: 21149958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films.
    Xu GH; Zhang Q; Huang JQ; Zhao MQ; Zhou WP; Wei F
    Langmuir; 2010 Feb; 26(4):2798-804. PubMed ID: 19817403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanosecond laser pulse-induced electron emission from multiwall carbon nanotube film.
    Wong TH; Gupta MC; Hernandez-Garcia C
    Nanotechnology; 2007 Apr; 18(13):135705. PubMed ID: 21730390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing electrical properties of individual carbon nanotubes filled with Fe
    Xu J; Lv X; Peng Y; Boi FS; Zhang X; Xiang G
    Nanotechnology; 2020 Nov; 31(47):475706. PubMed ID: 32674089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.