These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24182152)

  • 1. A two-axis in-plane motion measurement system based on optical beam deflection.
    Sriramshankar R; Sri Muthu Mrinalini R; Jayanth GR
    Rev Sci Instrum; 2013 Oct; 84(10):105001. PubMed ID: 24182152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high bandwidth three-axis out-of-plane motion measurement system based on optical beam deflection.
    Piyush P; Giridhar MS; Jayanth GR
    Rev Sci Instrum; 2018 Mar; 89(3):035003. PubMed ID: 29604761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser interferometric system for six-axis motion measurement.
    Zhang Z; Menq CH
    Rev Sci Instrum; 2007 Aug; 78(8):083107. PubMed ID: 17764313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high speed X-Y nanopositioner with integrated optical motion sensing.
    Gupta P; Piyush P; Sriramshankar R; Jayanth GR
    Rev Sci Instrum; 2019 Mar; 90(3):035002. PubMed ID: 30927770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays.
    Sathishkumar P; Punyabrahma P; Mrinalini RS; Jayanth GR
    Rev Sci Instrum; 2015 Sep; 86(9):096106. PubMed ID: 26429493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, implementation, and control of a six-axis compliant stage.
    Hu K; Kim JH; Schmiedeler J; Menq CH
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):025105. PubMed ID: 18315327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical beam deflection based system for multi-axis out-of-plane motion measurement at multiple points.
    Piyush P; Jayanth GR
    Rev Sci Instrum; 2020 Dec; 91(12):126101. PubMed ID: 33379943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-axis rapid steering of optically propelled micro/nanoparticles.
    Huang Y; Wan J; Cheng MC; Zhang Z; Jhiang SM; Menq CH
    Rev Sci Instrum; 2009 Jun; 80(6):063107. PubMed ID: 19566196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage.
    Liu CH; Chen JH; Teng YF
    Rev Sci Instrum; 2009 Nov; 80(11):115105. PubMed ID: 19947755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum-variance Brownian motion control of an optically trapped probe.
    Huang Y; Zhang Z; Menq CH
    Appl Opt; 2009 Oct; 48(30):5871-80. PubMed ID: 19844327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations.
    Zhu F; Tan J; Cui J
    Rev Sci Instrum; 2013 Jun; 84(6):065116. PubMed ID: 23822387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage.
    Li CX; Gu GY; Yang MJ; Zhu LM
    Rev Sci Instrum; 2013 Dec; 84(12):125111. PubMed ID: 24387472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries.
    Skworcow P; Mills JA; Haas OC; Burnham KJ
    Phys Med Biol; 2007 Dec; 52(23):7109-24. PubMed ID: 18029996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector.
    Pal SB; Haldar A; Roy B; Banerjee A
    Rev Sci Instrum; 2012 Feb; 83(2):023108. PubMed ID: 22380080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of multi-environment dual-probe atomic force microscopy system using optical beam deflection sensors with vertically incident laser beams.
    Tsunemi E; Kobayashi K; Oyabu N; Hirose M; Takenaka Y; Matsushige K; Yamada H
    Rev Sci Instrum; 2013 Aug; 84(8):083701. PubMed ID: 24007067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference method for ultra-precision measurement and compensation of laser beam angular deflection.
    Dobosz M; Iwasinska-Kowalska O
    Appl Opt; 2014 Jan; 53(1):111-22. PubMed ID: 24513997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed.
    Kenton BJ; Fleming AJ; Leang KK
    Rev Sci Instrum; 2011 Dec; 82(12):123703. PubMed ID: 22225220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated wide-angle scanner based on translating a curved mirror of acylindrical shape.
    Sabry YM; Khalil D; Saadany B; Bourouina T
    Opt Express; 2013 Jun; 21(12):13906-16. PubMed ID: 23787580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long stroke displacement measurement with reduced coupling error supporting high precision control of a beam flexure-based micro-stage.
    Lu S; Yan P; Zhang B
    Rev Sci Instrum; 2020 Jul; 91(7):073701. PubMed ID: 32752871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.