These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 24182193)

  • 21. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence.
    Kim YS; Sakuraba Y; Han SH; Yoo SC; Paek NC
    Plant Cell Physiol; 2013 Oct; 54(10):1660-72. PubMed ID: 23926065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In planta ORFeome analysis by large-scale over-expression of GATEWAY-compatible cDNA clones: screening of ERF transcription factors involved in abiotic stress defense.
    Weiste C; Iven T; Fischer U; Oñate-Sánchez L; Dröge-Laser W
    Plant J; 2007 Oct; 52(2):382-90. PubMed ID: 17672839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5.
    Kim JH; Hyun WY; Nguyen HN; Jeong CY; Xiong L; Hong SW; Lee H
    Plant Cell Environ; 2015 Mar; 38(3):559-71. PubMed ID: 25053018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The BBX family of plant transcription factors.
    Gangappa SN; Botto JF
    Trends Plant Sci; 2014 Jul; 19(7):460-70. PubMed ID: 24582145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soybean proteomics for unraveling abiotic stress response mechanism.
    Hossain Z; Khatoon A; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4670-84. PubMed ID: 24016329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses.
    Zhu Q; Zhang J; Gao X; Tong J; Xiao L; Li W; Zhang H
    Gene; 2010 Jun; 457(1-2):1-12. PubMed ID: 20193749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox proteomics for the assessment of redox-related posttranslational regulation in plants.
    Mock HP; Dietz KJ
    Biochim Biophys Acta; 2016 Aug; 1864(8):967-73. PubMed ID: 26784836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stress2TF: a manually curated database of TF regulation in plant response to stress.
    Zhang X; Yao C; Fu S; Xuan H; Wen S; Liu C; Li F; Liu A; Bi S; Zhang S; Li S
    Gene; 2018 Jan; 638():36-40. PubMed ID: 28974472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis.
    Muhammad D; Schmittling S; Williams C; Long TA
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):64-74. PubMed ID: 27485161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Jin J; He K; Tang X; Li Z; Lv L; Zhao Y; Luo J; Gao G
    Mol Biol Evol; 2015 Jul; 32(7):1767-73. PubMed ID: 25750178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CDF transcription factors: plant regulators to deal with extreme environmental conditions.
    Renau-Morata B; Carrillo L; Dominguez-Figueroa J; Vicente-Carbajosa J; Molina RV; Nebauer SG; Medina J
    J Exp Bot; 2020 Jun; 71(13):3803-3815. PubMed ID: 32072179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional regulatory network of plant cold-stress responses.
    Kidokoro S; Shinozaki K; Yamaguchi-Shinozaki K
    Trends Plant Sci; 2022 Sep; 27(9):922-935. PubMed ID: 35210165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators.
    Foyer CH; Wilson MH; Wright MH
    Free Radic Biol Med; 2018 Jul; 122():137-149. PubMed ID: 29605447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear redox processes in land plant development and stress adaptation.
    Zachgo S
    Biol Chem; 2023 Apr; 404(5):379-384. PubMed ID: 36853884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate.
    Selinski J; Scheibe R
    Antioxid Redox Signal; 2021 May; 34(13):1025-1047. PubMed ID: 32620064
    [No Abstract]   [Full Text] [Related]  

  • 37. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms.
    Zaffagnini M; Fermani S; Marchand CH; Costa A; Sparla F; Rouhier N; Geigenberger P; Lemaire SD; Trost P
    Antioxid Redox Signal; 2019 Jul; 31(3):155-210. PubMed ID: 30499304
    [No Abstract]   [Full Text] [Related]  

  • 38. Metabolic control of redox and redox control of metabolism in plants.
    Geigenberger P; Fernie AR
    Antioxid Redox Signal; 2014 Sep; 21(9):1389-421. PubMed ID: 24960279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells.
    Yin Z; Balmant K; Geng S; Zhu N; Zhang T; Dufresne C; Dai S; Chen S
    Front Plant Sci; 2017; 8():58. PubMed ID: 28184230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial redox-driven directionally controlled switches as a basis for redox-driven molecular motors.
    Tepper C; Haberhauer G
    Antioxid Redox Signal; 2013 Nov; 19(15):1783-91. PubMed ID: 23146097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.