These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24183429)
1. Surface properties of CNTs and their interaction with silica. Sobolkina A; Mechtcherine V; Bellmann C; Khavrus V; Oswald S; Hampel S; Leonhardt A J Colloid Interface Sci; 2014 Jan; 413():43-53. PubMed ID: 24183429 [TBL] [Abstract][Full Text] [Related]
2. Nano-Silica Sol-Gel and Carbon Nanotube Coupling Effect on the Performance of Cement-Based Materials. Li W; Ji W; Torabian Isfahani F; Wang Y; Li G; Liu Y; Xing F Nanomaterials (Basel); 2017 Jul; 7(7):. PubMed ID: 28708097 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. Li Z; Pan Z; Dai S J Colloid Interface Sci; 2004 Sep; 277(1):35-42. PubMed ID: 15276035 [TBL] [Abstract][Full Text] [Related]
4. Competitive wetting of acetonitrile and dichloromethane in comparison to that of water on functionalized carbon nanotube surfaces. Debgupta J; Kakade BA; Pillai VK Phys Chem Chem Phys; 2011 Aug; 13(32):14668-74. PubMed ID: 21743923 [TBL] [Abstract][Full Text] [Related]
5. Influence of surface oxidation of multiwalled carbon nanotubes on the adsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase. Wu W; Chen W; Lin D; Yang K Environ Sci Technol; 2012 May; 46(10):5446-54. PubMed ID: 22524230 [TBL] [Abstract][Full Text] [Related]
6. [Preparation of surface-modified carbon nanotubes/silica composite gel glass]. Huang J; Zheng C; Feng M; Zhan HB Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):52-5. PubMed ID: 19385204 [TBL] [Abstract][Full Text] [Related]
7. Interface enhancement of glass fiber reinforced vinyl ester composites with flame-synthesized carbon nanotubes and its enhancing mechanism. Liao L; Wang X; Fang P; Liew KM; Pan C ACS Appl Mater Interfaces; 2011 Feb; 3(2):534-8. PubMed ID: 21291279 [TBL] [Abstract][Full Text] [Related]
8. Effect of acid and alcohol network forces within functionalized multiwall carbon nanotubes bundles on adsorption of copper (II) species. Rosenzweig S; Sorial GA; Sahle-Demessie E; Mack J Chemosphere; 2013 Jan; 90(2):395-402. PubMed ID: 22921655 [TBL] [Abstract][Full Text] [Related]
9. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Gupta VK; Kumar R; Nayak A; Saleh TA; Barakat MA Adv Colloid Interface Sci; 2013 Jun; 193-194():24-34. PubMed ID: 23579224 [TBL] [Abstract][Full Text] [Related]
10. Surface design of carbon nanotubes for optimizing the adsorption and electrochemical response of analytes. Hu C; Hu S Langmuir; 2008 Aug; 24(16):8890-7. PubMed ID: 18630937 [TBL] [Abstract][Full Text] [Related]
11. Vibrational energy transfer between carbon nanotubes and nonaqueous solvents: a molecular dynamics study. Nelson TR; Chaban VV; Prezhdo VV; Prezhdo OV J Phys Chem B; 2011 May; 115(18):5260-7. PubMed ID: 21082855 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes. Maldonado S; Morin S; Stevenson KJ Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092 [TBL] [Abstract][Full Text] [Related]
13. Effects of carbon phase deposition in silica gel pores on NO2 reactive adsorption at ambient conditions on carbon/silica composites. Ebrahim AM; Levasseur B; Bandosz TJ Langmuir; 2013 Jun; 29(23):6895-902. PubMed ID: 23725646 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules. Shen JW; Wu T; Wang Q; Kang Y; Chen X Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602 [TBL] [Abstract][Full Text] [Related]
15. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds. Paula AJ; Stéfani D; Souza Filho AG; Kim YA; Endo M; Alves OL Chemistry; 2011 Mar; 17(11):3228-37. PubMed ID: 21328494 [TBL] [Abstract][Full Text] [Related]
16. Long-term colloidal stability of 10 carbon nanotube types in the absence/presence of humic acid and calcium. Schwyzer I; Kaegi R; Sigg L; Smajda R; Magrez A; Nowack B Environ Pollut; 2012 Oct; 169():64-73. PubMed ID: 22683482 [TBL] [Abstract][Full Text] [Related]
17. Colloidal stability of suspended and agglomerate structures of settled carbon nanotubes in different aqueous matrices. Schwyzer I; Kaegi R; Sigg L; Nowack B Water Res; 2013 Aug; 47(12):3910-20. PubMed ID: 23582307 [TBL] [Abstract][Full Text] [Related]
18. Design of superhydrophobic surfaces by synthesis of carbon nanotubes over Co-Mo nanocatalysts deposited under microwave irradiation on Ti-containing mesoporous silica thin films. Horiuchi Y; Shimizu Y; Kamegawa T; Mori K; Yamashita H Phys Chem Chem Phys; 2011 Apr; 13(13):6309-14. PubMed ID: 21359383 [TBL] [Abstract][Full Text] [Related]
19. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Schierz A; Zänker H Environ Pollut; 2009 Apr; 157(4):1088-94. PubMed ID: 19010575 [TBL] [Abstract][Full Text] [Related]
20. Striking influence of the catalyst support and its acid-base properties: new insight into the growth mechanism of carbon nanotubes. Magrez A; Smajda R; Seo JW; Horváth E; Ribic PR; Andresen JC; Acquaviva D; Olariu A; Laurenczy G; Forró L ACS Nano; 2011 May; 5(5):3428-37. PubMed ID: 21517089 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]