BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24183674)

  • 1. Mapping of mitochondrial RNA-protein interactions by digital RNase footprinting.
    Liu G; Mercer TR; Shearwood AM; Siira SJ; Hibbs ME; Mattick JS; Rackham O; Filipovska A
    Cell Rep; 2013 Nov; 5(3):839-48. PubMed ID: 24183674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-wide ribonuclease-mediated protein footprinting to identify RNA-protein interaction sites.
    Silverman IM; Gregory BD
    Methods; 2015 Jan; 72():76-85. PubMed ID: 25448484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA processing in human mitochondria.
    Sanchez MI; Mercer TR; Davies SM; Shearwood AM; Nygård KK; Richman TR; Mattick JS; Rackham O; Filipovska A
    Cell Cycle; 2011 Sep; 10(17):2904-16. PubMed ID: 21857155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription and processing of mitochondrial RNA in the human pathogen Acanthamoeba castellanii.
    Accari J; Barth C
    Mitochondrion; 2015 Jul; 23():25-31. PubMed ID: 26022779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome.
    Silverman IM; Li F; Alexander A; Goff L; Trapnell C; Rinn JL; Gregory BD
    Genome Biol; 2014 Jan; 15(1):R3. PubMed ID: 24393486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping RNA-protein interactions using iodine footprinting.
    Nilsen TW
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1337-41. PubMed ID: 25447283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of RNA-protein interactions by phosphorothioate footprinting and its applications to the ribosome.
    Ozlem Tastan Bishop A; Stelzl U; Pech M; Nierhaus KH
    Methods Mol Biol; 2008; 488():129-51. PubMed ID: 18982288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human mitochondrial transcriptome.
    Mercer TR; Neph S; Dinger ME; Crawford J; Smith MA; Shearwood AM; Haugen E; Bracken CP; Rackham O; Stamatoyannopoulos JA; Filipovska A; Mattick JS
    Cell; 2011 Aug; 146(4):645-58. PubMed ID: 21854988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm.
    Gaur RK; Hanne A; Conrad F; Kahle D; Krupp G
    RNA; 1996 Jul; 2(7):674-81. PubMed ID: 8756410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping RNA-protein interactions using hydroxyl-radical footprinting.
    Nilsen TW
    Cold Spring Harb Protoc; 2014 Dec; 2014(12):1333-6. PubMed ID: 25447282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases.
    Suzuki T; Nagao A; Suzuki T
    Annu Rev Genet; 2011; 45():299-329. PubMed ID: 21910628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Mitochondrial RNA-Processing Defects in Patient-Derived Tissues by qRT-PCR and RNAseq.
    Kopajtich R; Mayr JA; Prokisch H
    Methods Mol Biol; 2017; 1567():379-390. PubMed ID: 28276031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of human ELAC2 gene product in 3' end processing of mitochondrial tRNAs.
    Brzezniak LK; Bijata M; Szczesny RJ; Stepien PP
    RNA Biol; 2011; 8(4):616-26. PubMed ID: 21593607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2.
    Liu P; Huang J; Zheng Q; Xie L; Lu X; Jin J; Wang G
    Protein Cell; 2017 Oct; 8(10):735-749. PubMed ID: 28730546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods.
    Stewart JB; Beckenbach AT
    Gene; 2009 Sep; 445(1-2):49-57. PubMed ID: 19540318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of sense and antisense transcripts of the mitochondrial DNA region coding for ATPase 6 in fetal and adult porcine brain: identification of novel unusually assembled mitochondrial RNAs.
    Michel U; Stringaris AK; Nau R; Rieckmann P
    Biochem Biophys Res Commun; 2000 Apr; 271(1):170-80. PubMed ID: 10777698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital RNase Footprinting of RNA-Protein Complexes and Ribosomes in Mitochondria.
    Rudler DL; Siira SJ; Rackham O; Filipovska A
    Methods Mol Biol; 2023; 2661():317-328. PubMed ID: 37166645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs.
    Suzuki T; Nagao A; Suzuki T
    Wiley Interdiscip Rev RNA; 2011; 2(3):376-86. PubMed ID: 21957023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potato mitochondrial manganese superoxide dismutase is an RNA-binding protein.
    Fester T; Schuster W
    Biochem Mol Biol Int; 1995 May; 36(1):67-75. PubMed ID: 7545053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using RNase sequence specificity to refine the identification of RNA-protein binding regions.
    Wang X; Wang G; Shen C; Li L; Wang X; Mooney SD; Edenberg HJ; Sanford JR; Liu Y
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S17. PubMed ID: 18366606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.