BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 24183696)

  • 1. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
    Chaban Y; Boekema EJ; Dudkina NV
    Biochim Biophys Acta; 2014 Apr; 1837(4):418-26. PubMed ID: 24183696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory chain supercomplexes in the plant mitochondrial membrane.
    Dudkina NV; Heinemeyer J; Sunderhaus S; Boekema EJ; Braun HP
    Trends Plant Sci; 2006 May; 11(5):232-40. PubMed ID: 16616870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria.
    Stuart RA
    J Bioenerg Biomembr; 2008 Oct; 40(5):411-7. PubMed ID: 18839289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
    Dudkina NV; Sunderhaus S; Boekema EJ; Braun HP
    J Bioenerg Biomembr; 2008 Oct; 40(5):419-24. PubMed ID: 18839290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of mitochondrial supercomplexes.
    Dudkina NV; Kouril R; Peters K; Braun HP; Boekema EJ
    Biochim Biophys Acta; 2010; 1797(6-7):664-70. PubMed ID: 20036212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ordered Clusters of the Complete Oxidative Phosphorylation System in Cardiac Mitochondria.
    Nesterov S; Chesnokov Y; Kamyshinsky R; Panteleeva A; Lyamzaev K; Vasilov R; Yaguzhinsky L
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The function of the respiratory supercomplexes: the plasticity model.
    Acin-Perez R; Enriquez JA
    Biochim Biophys Acta; 2014 Apr; 1837(4):444-50. PubMed ID: 24368156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular organization of protein complexes in the mitochondrial inner membrane.
    Vonck J; Schäfer E
    Biochim Biophys Acta; 2009 Jan; 1793(1):117-24. PubMed ID: 18573282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.
    Letts JA; Sazanov LA
    Nat Struct Mol Biol; 2017 Oct; 24(10):800-808. PubMed ID: 28981073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional role of cardiolipin in mitochondrial bioenergetics.
    Paradies G; Paradies V; De Benedictis V; Ruggiero FM; Petrosillo G
    Biochim Biophys Acta; 2014 Apr; 1837(4):408-17. PubMed ID: 24183692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From protons to OXPHOS supercomplexes and Alzheimer's disease: structure-dynamics-function relationships of energy-transducing membranes.
    Seelert H; Dani DN; Dante S; Hauss T; Krause F; Schäfer E; Frenzel M; Poetsch A; Rexroth S; Schwassmann HJ; Suhai T; Vonck J; Dencher NA
    Biochim Biophys Acta; 2009 Jun; 1787(6):657-71. PubMed ID: 19281792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Who and how in the regulation of mitochondrial cristae shape and function.
    Quintana-Cabrera R; Mehrotra A; Rigoni G; Soriano ME
    Biochem Biophys Res Commun; 2018 May; 500(1):94-101. PubMed ID: 28438601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly.
    Stoldt S; Wenzel D; Kehrein K; Riedel D; Ott M; Jakobs S
    Nat Cell Biol; 2018 May; 20(5):528-534. PubMed ID: 29662179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role of mitochondrial respiratory supercomplexes.
    Genova ML; Lenaz G
    Biochim Biophys Acta; 2014 Apr; 1837(4):427-43. PubMed ID: 24246637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architecture of active mammalian respiratory chain supercomplexes.
    Schäfer E; Seelert H; Reifschneider NH; Krause F; Dencher NA; Vonck J
    J Biol Chem; 2006 Jun; 281(22):15370-5. PubMed ID: 16551638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects.
    Fernández-Vizarra E; Tiranti V; Zeviani M
    Biochim Biophys Acta; 2009 Jan; 1793(1):200-11. PubMed ID: 18620006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule studies of the dynamics and interactions of bacterial OXPHOS complexes.
    Lenn T; Leake MC
    Biochim Biophys Acta; 2016 Mar; 1857(3):224-31. PubMed ID: 26498189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research journey of respirasome.
    Wu M; Gu J; Zong S; Guo R; Liu T; Yang M
    Protein Cell; 2020 May; 11(5):318-338. PubMed ID: 31919741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.