These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24183789)
1. The effect of residual fibres on the micro-topography of cellulose nanopaper. Chinga-Carrasco G; Averianova N; Kondalenko O; Garaeva M; Petrov V; Leinsvang B; Karlsen T Micron; 2014 Jan; 56():80-4. PubMed ID: 24183789 [TBL] [Abstract][Full Text] [Related]
2. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Powell LC; Khan S; Chinga-Carrasco G; Wright CJ; Hill KE; Thomas DW Carbohydr Polym; 2016 Feb; 137():191-197. PubMed ID: 26686120 [TBL] [Abstract][Full Text] [Related]
3. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Sehaqui H; Liu A; Zhou Q; Berglund LA Biomacromolecules; 2010 Sep; 11(9):2195-8. PubMed ID: 20698565 [TBL] [Abstract][Full Text] [Related]
4. Cellulose nanopaper structures of high toughness. Henriksson M; Berglund LA; Isaksson P; Lindström T; Nishino T Biomacromolecules; 2008 Jun; 9(6):1579-85. PubMed ID: 18498189 [TBL] [Abstract][Full Text] [Related]
5. Better together: synergy in nanocellulose blends. Mautner A; Mayer F; Hervy M; Lee KY; Bismarck A Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277741 [TBL] [Abstract][Full Text] [Related]
6. Oriented Cellulose Nanopaper (OCNP) based on bagasse cellulose nanofibrils. Djafari Petroudy SR; Rasooly Garmaroody E; Rudi H Carbohydr Polym; 2017 Feb; 157():1883-1891. PubMed ID: 27987908 [TBL] [Abstract][Full Text] [Related]
7. Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface. Xiong R; Han Y; Wang Y; Zhang W; Zhang X; Lu C Carbohydr Polym; 2014 Nov; 113():264-71. PubMed ID: 25256484 [TBL] [Abstract][Full Text] [Related]
9. Anomalous tensile response of bacterial cellulose nanopaper at intermediate strain rates. Santmarti A; Liu HW; Herrera N; Lee KY Sci Rep; 2020 Sep; 10(1):15260. PubMed ID: 32943686 [TBL] [Abstract][Full Text] [Related]
10. Rapid Water Softening with TEMPO-Oxidized/Phosphorylated Nanopapers. Mautner A; Kobkeatthawin T; Mayer F; Plessl C; Gorgieva S; Kokol V; Bismarck A Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678201 [TBL] [Abstract][Full Text] [Related]
11. Nanopaper Properties and Adhesive Performance of Microfibrillated Cellulose from Different (Ligno-)Cellulosic Raw Materials. Pinkl S; Veigel S; Colson J; Gindl-Altmutter W Polymers (Basel); 2017 Jul; 9(8):. PubMed ID: 30971001 [TBL] [Abstract][Full Text] [Related]
12. Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength. Chen F; Xiang W; Sawada D; Bai L; Hummel M; Sixta H; Budtova T ACS Nano; 2020 Sep; 14(9):11150-11159. PubMed ID: 32804482 [TBL] [Abstract][Full Text] [Related]
13. Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Hsieh MC; Kim C; Nogi M; Suganuma K Nanoscale; 2013 Oct; 5(19):9289-95. PubMed ID: 23793980 [TBL] [Abstract][Full Text] [Related]
14. Cellulose Nanopaper: Fabrication, Functionalization, and Applications. Liu W; Liu K; Du H; Zheng T; Zhang N; Xu T; Pang B; Zhang X; Si C; Zhang K Nanomicro Lett; 2022 Apr; 14(1):104. PubMed ID: 35416525 [TBL] [Abstract][Full Text] [Related]
15. Strong and tough cellulose nanopaper with high specific surface area and porosity. Sehaqui H; Zhou Q; Ikkala O; Berglund LA Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417 [TBL] [Abstract][Full Text] [Related]
16. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices. Yagyu H; Saito T; Isogai A; Koga H; Nogi M ACS Appl Mater Interfaces; 2015 Oct; 7(39):22012-7. PubMed ID: 26402324 [TBL] [Abstract][Full Text] [Related]
17. Facile and quick formation of cellulose nanopaper with nanoparticles and its characterization. Ma L; Xu Z; Zhang X; Lin J; Tai R Carbohydr Polym; 2019 Oct; 221():195-201. PubMed ID: 31227158 [TBL] [Abstract][Full Text] [Related]
18. A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications. Abbasi-Moayed S; Golmohammadi H; Hormozi-Nezhad MR Nanoscale; 2018 Feb; 10(5):2492-2502. PubMed ID: 29340401 [TBL] [Abstract][Full Text] [Related]
19. Highly Electroconductive Nanopapers Based on Nanocellulose and Copper Nanowires: A New Generation of Flexible and Sustainable Electrical Materials. Pinto RJB; Martins MA; Lucas JMF; Vilela C; Sales AJM; Costa LC; Marques PAAP; Freire CSR ACS Appl Mater Interfaces; 2020 Jul; 12(30):34208-34216. PubMed ID: 32588615 [TBL] [Abstract][Full Text] [Related]
20. Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane. Sethi J; Farooq M; Österberg M; Illikainen M; Sirviö JA Carbohydr Polym; 2018 Nov; 199():286-293. PubMed ID: 30143131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]