BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24183865)

  • 1. A 4D-optimization concept for scanned ion beam therapy.
    Graeff C; Lüchtenborg R; Eley JG; Durante M; Bert C
    Radiother Oncol; 2013 Dec; 109(3):419-24. PubMed ID: 24183865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness of 4D-optimized scanned carbon ion beam therapy against interfractional changes in lung cancer.
    Graeff C
    Radiother Oncol; 2017 Mar; 122(3):387-392. PubMed ID: 28073579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Log file-based dose reconstruction and accumulation for 4D adaptive pencil beam scanned proton therapy in a clinical treatment planning system: Implementation and proof-of-concept.
    Meijers A; Jakobi A; Stützer K; Guterres Marmitt G; Both S; Langendijk JA; Richter C; Knopf A
    Med Phys; 2019 Mar; 46(3):1140-1149. PubMed ID: 30609061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust treatment planning with 4D intensity modulated carbon ion therapy for multiple targets in stage IV non-small cell lung cancer.
    Wolf M; Anderle K; Durante M; Graeff C
    Phys Med Biol; 2020 Nov; 65(21):215012. PubMed ID: 32610300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion mitigation in scanned ion beam therapy through 4D-optimization.
    Graeff C
    Phys Med; 2014 Jul; 30(5):570-7. PubMed ID: 24818997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary tests of dosimetric quality and projected therapeutic outcomes of multi-phase 4D radiotherapy with proton and carbon ion beams.
    Lis M; Newhauser W; Donetti M; Wolf M; Steinsberger T; Paz A; Graeff C
    Phys Med Biol; 2021 Nov; 66(23):. PubMed ID: 34740202
    [No Abstract]   [Full Text] [Related]  

  • 7. Dosimetric evaluation of 4D-CBCT reconstructed by Simultaneous Motion Estimation and Image Reconstruction (SMEIR) for carbon ion therapy of lung cancer.
    Shrestha D; Tsai MY; Qin N; Zhang Y; Jia X; Wang J
    Med Phys; 2019 Sep; 46(9):4087-4094. PubMed ID: 31299097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse 4D conformal planning for lung SBRT using particle swarm optimization.
    Modiri A; Gu X; Hagan A; Bland R; Iyengar P; Timmerman R; Sawant A
    Phys Med Biol; 2016 Aug; 61(16):6181-202. PubMed ID: 27476472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multigating, a 4D optimized beam tracking in scanned ion beam therapy.
    Graeff C; Constantinescu A; Lüchtenborg R; Durante M; Bert C
    Technol Cancer Res Treat; 2014 Dec; 13(6):497-504. PubMed ID: 24354752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Validation of a Real-Time Adaptive 4D-Optimized Particle Radiotherapy Approach to Treat Irregularly Moving Tumors.
    Steinsberger T; Donetti M; Lis M; Volz L; Wolf M; Durante M; Graeff C
    Int J Radiat Oncol Biol Phys; 2023 Apr; 115(5):1257-1268. PubMed ID: 36462690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers.
    Chan MK; Kwong DL; Ng SC; Tong AS; Tam EK
    Med Phys; 2013 Apr; 40(4):041712. PubMed ID: 23556882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Management of organ motion in scanned ion beam therapy.
    Bert C; Herfarth K
    Radiat Oncol; 2017 Nov; 12(1):170. PubMed ID: 29110693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D VMAT planning and verification technique for dynamic tracking using a direct aperture deformation (DAD) method.
    Zhang Y; Yang Y; Fu W; Li X; Li T; Heron DE; Huq MS
    J Appl Clin Med Phys; 2017 Mar; 18(2):50-61. PubMed ID: 28300367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.
    Eley JG; Newhauser WD; Richter D; Lüchtenborg R; Saito N; Bert C
    Phys Med Biol; 2015 Feb; 60(4):1717-40. PubMed ID: 25650520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric advantages of four-dimensional adaptive image-guided radiotherapy for lung tumors using online cone-beam computed tomography.
    Harsolia A; Hugo GD; Kestin LL; Grills IS; Yan D
    Int J Radiat Oncol Biol Phys; 2008 Feb; 70(2):582-9. PubMed ID: 18207034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator.
    Niu Y; Betzel GT; Yang X; Gui M; Parke WC; Yi B; Yu CX
    Phys Med Biol; 2017 Feb; 62(4):1480-1500. PubMed ID: 28052050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four-dimensional patient dose reconstruction for scanned ion beam therapy of moving liver tumors.
    Richter D; Saito N; Chaudhri N; Härtig M; Ellerbrock M; Jäkel O; Combs SE; Habermehl D; Herfarth K; Durante M; Bert C
    Int J Radiat Oncol Biol Phys; 2014 May; 89(1):175-81. PubMed ID: 24725700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical Note: Predicting dose distribution with replacing stopping power ratio for inter-fractional motion and intra-fractional motion during carbon ion radiotherapy with passive irradiation method for stage I lung cancer.
    Kubota Y; Sakai M; Tashiro M; Saitoh JI; Abe T; Ohno T; Nakano T
    Med Phys; 2018 Jul; 45(7):3435-3441. PubMed ID: 29757472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D treatment planning for scanned ion beams.
    Bert C; Rietzel E
    Radiat Oncol; 2007 Jul; 2():24. PubMed ID: 17608919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of fractionation and number of fields on dose homogeneity for intra-fractionally moving lung tumors using scanned carbon ion treatment.
    Wölfelschneider J; Friedrich T; Lüchtenborg R; Zink K; Scholz M; Dong L; Durante M; Bert C
    Radiother Oncol; 2016 Mar; 118(3):498-503. PubMed ID: 26743829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.