These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 24184157)

  • 41. Efficacy of indigenous entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae), from Rio Grande do Sul Brazil, against Anastrephafraterculus (Wied.) (Diptera: Tephritidae) in peach orchards.
    Barbosa-Negrisoli CR; Garcia MS; Dolinski C; Negrisoli AS; Bernardi D; Nava DE
    J Invertebr Pathol; 2009 Sep; 102(1):6-13. PubMed ID: 19460384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ambush foraging entomopathogenic nematodes employ 'sprinters' for long-distance dispersal in the absence of hosts.
    Bal HK; Taylor RA; Grewal PS
    J Parasitol; 2014 Aug; 100(4):422-32. PubMed ID: 24650130
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus.
    Santhi VS; Ment D; Faigenboim A; Salame L; Soroker V; Hetzroni A; Glazer I
    Mol Biochem Parasitol; 2021 Jan; 241():111345. PubMed ID: 33290763
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis.
    Kruitbos LM; Heritage S; Hapca S; Wilson MJ
    Parasitology; 2010 Feb; 137(2):303-9. PubMed ID: 19835647
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of the entomopathogenic nematode, Steinernema riobrave to its insect hosts, Galleria mellonella and Tenebrio molitor.
    Christen JM; Campbell JF; Lewis EE; Shapiro-Ilan DI; Ramaswamy SB
    Parasitology; 2007 Jun; 134(Pt 6):889-98. PubMed ID: 17201992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wide interguild relationships among entomopathogenic and free-living nematodes in soil as measured by real time qPCR.
    Campos-Herrera R; El-Borai FE; Duncan LW
    J Invertebr Pathol; 2012 Oct; 111(2):126-35. PubMed ID: 22841945
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Competition Between Entomopathogenic and Free-Living Bactivorous Nematodes in Larvae of the Weevil Diaprepes abbreviatus.
    Duncan LW; Dunn DC; Bague G; Nguyen K
    J Nematol; 2003 Jun; 35(2):187-93. PubMed ID: 19265993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Soil moisture effects on the activity of three entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) isolated from Meghalaya, India.
    Yadav AK; Lalramliana
    J Parasit Dis; 2012 Apr; 36(1):94-8. PubMed ID: 23543771
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A survey of entomopathogenic nematode species in continental Portugal.
    Valadas V; Laranjo M; Mota M; Oliveira S
    J Helminthol; 2014 Sep; 88(3):327-41. PubMed ID: 23590880
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Variations in Immune Response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema Species.
    Wang Y; Gaugler R; Cui L
    J Nematol; 1994 Mar; 26(1):11-8. PubMed ID: 19279863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria.
    Gouge DH; Snyder JL
    J Invertebr Pathol; 2006 Mar; 91(3):147-57. PubMed ID: 16448667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The activity of hydrolases of entomopathogenic nematodes.
    Zółtowska K; Lopieńska E
    Wiad Parazytol; 2003; 49(4):375-9. PubMed ID: 16888935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Establishment, persistence, and introgression of entomopathogenic nematodes in a forest ecosystem.
    Dillon AB; Rolston AN; Meade CV; Downes MJ; Griffin CT
    Ecol Appl; 2008 Apr; 18(3):735-47. PubMed ID: 18488631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence.
    Spence KO; Stevens GN; Arimoto H; Ruiz-Vega J; Kaya HK; Lewis EE
    J Invertebr Pathol; 2011 Feb; 106(2):268-73. PubMed ID: 21047513
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissemination of
    Nermuť J; Konopická J; Zemek R; Kopačka M; Bohatá A; Půža V
    J Fungi (Basel); 2020 Dec; 6(4):. PubMed ID: 33322531
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ammonia concentration at emergence and its effects on the recovery of different species of entomopathogenic nematodes.
    San-Blas E; Pirela D; García D; Portillo E
    Exp Parasitol; 2014 Sep; 144():1-5. PubMed ID: 24880156
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seasonal dynamics of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis as a response to abiotic factors and abundance of insect hosts.
    Půza V; Mrácek Z
    J Invertebr Pathol; 2005 Jun; 89(2):116-22. PubMed ID: 15893761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production.
    Lacey LA; Georgis R
    J Nematol; 2012 Jun; 44(2):218-25. PubMed ID: 23482993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of application technologies of entomopathogenic nematodes for control of the black vine weevil.
    Bruck DJ; Shapiro-Ilan DI; Lewis EE
    J Econ Entomol; 2005 Dec; 98(6):1884-9. PubMed ID: 16539109
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica.
    Somvanshi VS; Gahoi S; Banakar P; Thakur PK; Kumar M; Sajnani M; Pandey P; Rao U
    BMC Genomics; 2016 Mar; 17():166. PubMed ID: 26931371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.