BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24184258)

  • 21. Abnormal germ cell development in cryptorchidism.
    Huff DS; Fenig DM; Canning DA; Carr MG; Zderic SA; Snyder HM
    Horm Res; 2001; 55(1):11-7. PubMed ID: 11423736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CD49f-positive testicular cells in Saanen dairy goat were identified as spermatogonia-like cells by miRNA profiling analysis.
    Wu J; Liao M; Zhu H; Kang K; Mu H; Song W; Niu Z; He X; Bai C; Li G; Li X; Hua J
    J Cell Biochem; 2014 Oct; 115(10):1712-23. PubMed ID: 24817091
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunohistology of aquaporin-1 and stem cell factor-receptor in human undescended testes.
    Nicòtina PA; Romeo C; Arena S; Impellizzeri P; Antonuccio P; Arena F; Zuccarello B; Romeo G
    Pediatr Surg Int; 2004 Apr; 20(4):271-5. PubMed ID: 15133700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental cryptorchidism induces a change in the pattern of expression of LH receptor mRNA in rat testis after selective Leydig cell destruction by ethylene dimethane sulfonate.
    Tena-Sempere M; Kero J; Rannikko A; Huhtaniemi I
    J Endocrinol; 1999 Apr; 161(1):131-41. PubMed ID: 10194537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of anti-Müllerian hormone, CDKN1B, connexin 43, androgen receptor and steroidogenic enzymes in the equine cryptorchid testis.
    Almeida J; Conley AJ; Ball BA
    Equine Vet J; 2013 Sep; 45(5):538-45. PubMed ID: 23294085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MicroRNA-135a regulates sodium-calcium exchanger gene expression and cardiac electrical activity.
    Duong E; Xiao J; Qi XY; Nattel S
    Heart Rhythm; 2017 May; 14(5):739-748. PubMed ID: 28188930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Expression change and significance of homebox gene-A10 in rat cryptorchidism].
    Chen Y; Liu L; Huang J; Zhou Y; Yin Q; Ge W; Zhao J; Xian H
    Zhonghua Yi Xue Za Zhi; 2014 Feb; 94(6):464-6. PubMed ID: 24754995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reciprocal localization of transcription factors YY1 and CP2c in spermatogonial stem cells and their putative roles during spermatogenesis.
    Kim JS; Chae JH; Cheon YP; Kim CG
    Acta Histochem; 2016 Sep; 118(7):685-692. PubMed ID: 27612612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The histopathology of iatrogenic cryptorchid testis: an insight into etiology.
    Fenig DM; Snyder HM; Wu HY; Canning DA; Huff DS
    J Urol; 2001 Apr; 165(4):1258-61. PubMed ID: 11257697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells.
    Niu Z; Goodyear SM; Rao S; Wu X; Tobias JW; Avarbock MR; Brinster RL
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12740-5. PubMed ID: 21768389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative studies of fertility and histologic development of contralateral scrotal testes in two rat models of unilateral cryptorchidism.
    Zakaria O; Shono T; Imajima T; Suita S
    Pediatr Surg Int; 2000; 16(7):498-501. PubMed ID: 11057551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analysis of stem cells in the adult rat testis.
    Orwig KE; Shinohara T; Avarbock MR; Brinster RL
    Biol Reprod; 2002 Apr; 66(4):944-9. PubMed ID: 11906912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1.
    Zhao T; Li J; Chen AF
    Am J Physiol Endocrinol Metab; 2010 Jul; 299(1):E110-6. PubMed ID: 20424141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Transcriptomics Analysis of Testicular miRNA from Cryptorchid and Normal Horses.
    Han H; Chen Q; Gao Y; Li J; Li W; Dang R; Lei C
    Animals (Basel); 2020 Feb; 10(2):. PubMed ID: 32098036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expressions of miR-22 and miR-135a in acute pancreatitis.
    Qin T; Fu Q; Pan YF; Liu CJ; Wang YZ; Hu MX; Tang Q; Zhang HW
    J Huazhong Univ Sci Technolog Med Sci; 2014 Apr; 34(2):225-233. PubMed ID: 24710937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disorganization of claudin-11 and dysfunction of the blood-testis barrier during puberty in a cryptorchid rat model.
    Kato T; Mizuno K; Nishio H; Moritoki Y; Kamisawa H; Kurokawa S; Nakane A; Maruyama T; Ando R; Hayashi Y; Yasui T
    Andrology; 2020 Sep; 8(5):1398-1408. PubMed ID: 32196966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histomorphometric study on germ cell differentiation of unilateral cryptorchidism in the immature pig.
    Zhou B; Hutson JM; Hasthorpe S
    J Pediatr Surg; 1996 Oct; 31(10):1364-6. PubMed ID: 8906662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. miR-135a inhibits glioma cell proliferation and invasion by directly targeting FOXO1.
    Shi HZ; Wang DN; Xu F; Teng JH; Wang YL
    Eur Rev Med Pharmacol Sci; 2018 Jul; 22(13):4215-4223. PubMed ID: 30024610
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNA-224 regulates self-renewal of mouse spermatogonial stem cells via targeting DMRT1.
    Cui N; Hao G; Zhao Z; Wang F; Cao J; Yang A
    J Cell Mol Med; 2016 Aug; 20(8):1503-12. PubMed ID: 27099200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryptorchidism-induced CFTR down-regulation results in disruption of testicular tight junctions through up-regulation of NF-κB/COX-2/PGE2.
    Chen J; Fok KL; Chen H; Zhang XH; Xu WM; Chan HC
    Hum Reprod; 2012 Sep; 27(9):2585-97. PubMed ID: 22777528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.